Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Strategies for analyzing multilevel cluster-randomized studies with binary outcomes collected at varying intervals of time.

Olsen MK, Delong ER, Oddone EZ, Bosworth HB. Strategies for analyzing multilevel cluster-randomized studies with binary outcomes collected at varying intervals of time. Statistics in medicine. 2008 Dec 20; 27(29):6055-71.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Frequently, studies are conducted in a real clinic setting. When the outcome of interest is collected longitudinally over a specified period of time, this design can lead to unequally spaced intervals and varying numbers of assessments. In our study, these features were embedded in a randomized, factorial design in which interventions to improve blood pressure control were delivered to both patients and providers. We examine the effect of the intervention and compare methods of estimation of both fixed effects and variance components in the multilevel generalized linear mixed model. Methods of comparison include penalized quasi-likelihood (PQL), adaptive quadrature, and Bayesian Monte Carlo methods. We also investigate the implications of reducing the data and analysis to baseline and final measurements. In the full analysis, the PQL fixed-effects estimates were closest to zero and confidence intervals were generally narrower than those of the other methods. The adaptive quadrature and Bayesian fixed-effects estimates were similar, but the Bayesian credible intervals were consistently wider. Variance component estimation was markedly different across methods, particularly for the patient-level random effects. In the baseline and final measurement analysis, we found that estimates and corresponding confidence intervals for the adaptive quadrature and Bayesian methods were very similar. However, the time effect was diminished and other factors also failed to reach statistical significance, most likely due to decreased power. When analyzing data from this type of design, we recommend using either adaptive quadrature or Bayesian methods to fit a multilevel generalized linear mixed model including all available measurements.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.