Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Reference change value of global longitudinal strain in clinical practice: A test-rest quality implementation project.

Tuzovic M, Tang X, Francisco N, Sell A, Drew R, Paloma A, Chow J, Liang D, Heidenreich P, Salerno M, Schnittger I, Haddad F. Reference change value of global longitudinal strain in clinical practice: A test-rest quality implementation project. Echocardiography (Mount Kisco, N.Y.). 2022 Dec 1; 39(12):1522-1531.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Reference change value (RCV) is used to assess the significance of the difference between two measurements after accounting for pre-analytic, analytic, and within-subject variability. The objective of the current study was to define the RCV for global longitudinal strain (GLS) using different semi-automated software in standard clinical practice. METHODS: Using a test-retest study design, we quantified the median coefficient of variation (CV) for GLS using AutoStrain and Automated Cardiac Motion Quantification (aCMQ) by Philips. Triplane left-ventricular ejection fraction (LVEF) was measured for comparison. Multivariable regression analysis was performed to determine factors influencing test-retest CV including image quality and the presence of segmental wall motion abnormalities (WMA). RCV was reported using a standard formula assuming two standard deviations for repeated measurements; results were also translated into Bayesian probability. Total measurement variation was described in terms of its three different components: pre-analytic (acquisition), analytic (measuring variation), and within-subject (biological) variation. RESULT: Of the 44 individuals who were screened, 41 had adequate quality for strain quantification. The mean age of the cohort was 56.4 ± 16.8 years, 41% female, LVEF was 55.8 ± 9.8% and the median and interquartile range for LV GLS was -17.2 [-19.3 to -14.8]%. Autostrain was more time efficient (80% less analysis time) and had a lower total median CV than aCMQ (CV  =  7.4% vs. 17.6%, p <  .001). The total CV was higher in patients with WMA (6.4% vs. 13.2%, p  =  .035). In non-segmental disease, the CV translates to a RCV of 15% (corresponding to a probability of real change of 80%). Assuming a within-subject variability of 4.0%, the component analysis identified that inter-reader variability accounts for 3.7% of the CV, while acquisition variability accounts for 4.0%. CONCLUSION: Using test-retest analysis and CVs, we find that an RCV of 15% for GLS represents an optimistic estimate in routine clinical practice. Based on our results, a higher RCV of 17%-21% is needed in order to provide a high probability of clinically meaningful change in GLS in all comers. The methodology presented here for determining measurement reproducibility and RCVs is easily translatable into clinical practice for any imaging parameter.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.