Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Learning from past respiratory failure patients to triage COVID-19 patient ventilator needs: A multi-institutional study.

Carmichael H, Coquet J, Sun R, Sang S, Groat D, Asch SM, Bledsoe J, Peltan ID, Jacobs JR, Hernandez-Boussard T. Learning from past respiratory failure patients to triage COVID-19 patient ventilator needs: A multi-institutional study. Journal of Biomedical Informatics. 2021 Jul 1; 119:103802.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Unlike well-established diseases that base clinical care on randomized trials, past experiences, and training, prognosis in COVID19 relies on a weaker foundation. Knowledge from other respiratory failure diseases may inform clinical decisions in this novel disease. The objective was to predict 48-hour invasive mechanical ventilation (IMV) within 48 h in patients hospitalized with COVID-19 using COVID-like diseases (CLD). METHODS: This retrospective multicenter study trained machine learning (ML) models on patients hospitalized with CLD to predict IMV within 48 h in COVID-19 patients. CLD patients were identified using diagnosis codes for bacterial pneumonia, viral pneumonia, influenza, unspecified pneumonia and acute respiratory distress syndrome (ARDS), 2008-2019. A total of 16 cohorts were constructed, including any combinations of the four diseases plus an exploratory ARDS cohort, to determine the most appropriate cohort to use. Candidate predictors included demographic and clinical parameters that were previously associated with poor COVID-19 outcomes. Model development included the implementation of logistic regression and three ensemble tree-based algorithms: decision tree, AdaBoost, and XGBoost. Models were validated in hospitalized COVID-19 patients at two healthcare systems, March 2020-July 2020. ML models were trained on CLD patients at Stanford Hospital Alliance (SHA). Models were validated on hospitalized COVID-19 patients at both SHA and Intermountain Healthcare. RESULTS: CLD training data were obtained from SHA (n  =  14,030), and validation data included 444 adult COVID-19 hospitalized patients from SHA (n  =  185) and Intermountain (n  =  259). XGBoost was the top-performing ML model, and among the 16 CLD training cohorts, the best model achieved an area under curve (AUC) of 0.883 in the validation set. In COVID-19 patients, the prediction models exhibited moderate discrimination performance, with the best models achieving an AUC of 0.77 at SHA and 0.65 at Intermountain. The model trained on all pneumonia and influenza cohorts had the best overall performance (SHA: positive predictive value (PPV) 0.29, negative predictive value (NPV) 0.97, positive likelihood ratio (PLR) 10.7; Intermountain: PPV, 0.23, NPV 0.97, PLR 10.3). We identified important factors associated with IMV that are not traditionally considered for respiratory diseases. CONCLUSIONS: The performance of prediction models derived from CLD for 48-hour IMV in patients hospitalized with COVID-19 demonstrate high specificity and can be used as a triage tool at point of care. Novel predictors of IMV identified in COVID-19 are often overlooked in clinical practice. Lessons learned from our approach may assist other research institutes seeking to build artificial intelligence technologies for novel or rare diseases with limited data for training and validation.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.