Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Urine tricarboxylic acid cycle signatures of early-stage diabetic kidney disease.

Lunyera J, Diamantidis CJ, Bosworth HB, Patel UD, Bain J, Muehlbauer MJ, Ilkayeva O, Nguyen M, Sharma B, Ma JZ, Shah SH, Scialla JJ. Urine tricarboxylic acid cycle signatures of early-stage diabetic kidney disease. Metabolomics : Official journal of the Metabolomic Society. 2021 Dec 20; 18(1):5.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

INTRODUCTION: Urine tricarboxylic acid (TCA) cycle organic anions (OAs) are elevated in diabetes and may be biomarkers for diabetic kidney disease (DKD) progression. OBJECTIVES: We assessed associations of 10 urine TCA cycle OAs with estimated glomerular filtration rate (eGFR) and eGFR slope. METHODS: This study is ancillary to the Simultaneous Risk Factor Control Using Telehealth to SlOw Progression of Diabetic Kidney Disease (STOP-DKD) Trial-a randomized trial of pharmacist-led medication and behavior management in 281 patients with early to moderate DKD at Duke from 2014 to 2015. We used linear mixed models to assess associations of urine TCA cycle OAs with outcomes and modelled TCA cycle OAs as: (1) the average of z-scores for each OA; and (2) principal component (PC) scores derived by principal component analysis (PCA). Untargeted urine metabolomics were added for additional discovery. RESULTS: Among 132 participants with 24 h urine samples (50% men; 58% Black; mean age 64 years [SD 9]; mean eGFR 74 ml/min/1.73m [SD 21] and median urine albumin-to-creatinine [UACR] 20 mg/g [IQR 8-95]), PCA identified 3 OA metabolite PCs. Malate, fumarate, pyruvate, a-ketoglutarate, lactate, succinate and citrate/isocitrate loaded positively on PC1; methylsuccinate, ethylmalonate and succinate loaded positively on PC2; and methylmalonate, ethylmalonate and citrate/isocitrate loaded negatively on PC3. Over a median follow-up of 1.8 years (IQR, 1.2 to 2.2), higher average OA z-score was strongly associated with higher eGFR after covariate adjustment (p? = 0.01), but not with eGFR slope (p? = 0.9). Higher PC3, but not other PCs, was associated with lower eGFR (p? < 0.001). Conditional random forests and smooth clipped absolute deviation models confirmed methylmalonate, citrate/isocitrate, and ethylmalonate, and added lactate as top ranked metabolites in models of baseline eGFR (R-squared 0.32 and 0.33, respectively). Untargeted urine metabolites confirmed association of urine TCA cycle OAs with kidney function. CONCLUSION: Thus, lower urine TCA cycle OAs, most notably lower methylmalonate, ethylmalonate and citrate/isocitrate, are potential indicators of kidney impairment in early stage DKD.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.