Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Iterative Development and Evaluation of a Pharmacogenomic-Guided Clinical Decision Support System for Warfarin Dosing.

Melton BL, Zillich AJ, Saleem J, Russ AL, Tisdale JE, Overholser BR. Iterative Development and Evaluation of a Pharmacogenomic-Guided Clinical Decision Support System for Warfarin Dosing. Applied clinical informatics. 2016 Nov 23; 7(4):1088-1106.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVE: Pharmacogenomic-guided dosing has the potential to improve patient outcomes but its implementation has been met with clinical challenges. Our objective was to develop and evaluate a clinical decision support system (CDSS) for pharmacogenomic-guided warfarin dosing designed for physicians and pharmacists. METHODS: Twelve physicians and pharmacists completed 6 prescribing tasks using simulated patient scenarios in two iterations (development and validation phases) of a newly developed pharmacogenomic-driven CDSS prototype. For each scenario, usability was measured via efficiency, recorded as time to task completion, and participants' perceived satisfaction which were compared using Kruskal-Wallis and Mann Whitney U tests, respectively. Debrief interviews were conducted and qualitatively analyzed. Usability findings from the first (i.e. development) iteration were incorporated into the CDSS design for the second (i.e. validation) iteration. RESULTS: During the CDSS validation iteration, participants took more time to complete tasks with a median (IQR) of 183 (124-247) seconds versus 101 (73.5-197) seconds in the development iteration (p = 0.01). This increase in time on task was due to the increase in time spent in the CDSS corresponding to several design changes. Efficiency differences that were observed between pharmacists and physicians in the development iteration were eliminated in the validation iteration. The increased use of the CDSS corresponded to a greater acceptance of CDSS recommended doses in the validation iteration (4% in the first iteration vs. 37.5% in the second iteration, p < 0.001). Overall satisfaction did not change statistically between the iterations but the qualitative analysis revealed greater trust in the second prototype. CONCLUSIONS: A pharmacogenomic-guided CDSS has been developed using warfarin as the test drug. The final CDSS prototype was trusted by prescribers and significantly increased the time using the tool and acceptance of the recommended doses. This study is an important step toward incorporating pharmacogenomics into CDSS design for clinical testing.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.