Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Predicting mortality and healthcare utilization with a single question.

DeSalvo KB, Fan VS, McDonell MB, Fihn SD. Predicting mortality and healthcare utilization with a single question. Health services research. 2005 Aug 1; 40(4):1234-46.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVE: We compared single- and multi-item measures of general self-rated health (GSRH) to predict mortality and clinical events a large population of veteran patients. DATA SOURCE/STUDY SETTING: We analyzed prospective cohort data collected from 21,732 patients as part of the Veterans Affairs Ambulatory Care Quality Improvement Project (ACQUIP), a randomized controlled trial investigating quality-of-care interventions. STUDY DESIGN: We created an age-adjusted, logistic regression model for each predictor and outcome combination, and estimated the odds of events by response category of the GSRH question and compared the discriminative ability of the predictors by developing receiver operator characteristic curves and comparing the associated area under the curve (AUC)/c-statistic for the single- and multi-item measures. DATA COLLECTION/EXTRACTION METHODS: All patients were sent a baseline assessment that included a multi-item measure of general health, the 36-item Medical Outcomes Study Short Form (SF-36), and an inventory of comorbid conditions. We compared the predictive and discriminative ability of the GSRH to the SF-36 physical component score (PCS), the mental component score (MCS), and the Seattle index of comorbidity (SIC). The GSRH is an item included in the SF-36, with the wording: "In general, would you say your health is: Excellent, Very Good, Good, Fair, Poor?" PRINCIPAL FINDINGS: The GSRH, PCS, and SIC had comparable AUC for predicting mortality (AUC 0.74, 0.73, and 0.73, respectively); hospitalization (AUC 0.63, 0.64, and 0.60, respectively); and high outpatient use (AUC 0.61, 0.61, and 0.60, respectively). The MCS had statistically poorer discriminatory performance for mortality and hospitalization than any other other predictors (p < .001). CONCLUSIONS: The GSRH response categories can be used to stratify patients with varying risks for adverse outcomes. Patients reporting "poor" health are at significantly greater odds of dying or requiring health care resources compared with their peers. The GSRH, collectable at the point of care, is comparable with longer instruments.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.