Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

CDA 17-167 – HSR Study

 
CDA 17-167
Understanding physicians' diagnostic accuracy in the EHR era
Ashley ND Meyer, PhD
Michael E. DeBakey VA Medical Center, Houston, TX
Houston, TX
Funding Period: October 2018 - September 2023
Portfolio Assignment: Quality Measurement Development

Abstract

Background and significance. Diagnostic errors are highly prevalent, affecting 12 million US adults per year (~1 in 20) in outpatient settings alone. Half are estimated to be harmful, with an estimated 40,000- 80,000 people dying every year in the US because of diagnostic errors. Furthermore, Veterans, who have more medical conditions than non-Veterans do, may be disproportionately affected by diagnostic errors. Indeed, at least 1 million Veterans may have diagnostic errors each year, preventing them from receiving the timely and helpful treatments they deserve. Given a high prevalence of diagnostic errors, researchers have begun to identify the origins of these errors and have attributed cognitive causes to a majority of them. Many times, however, the source of each error has been identified as a cognitive bias, which has been found to be very difficult to detect and address. However, evidence suggests that cognitive characteristics of physicians (e.g., their situation awareness [SA; ability to assess the current situation] and their metacognitive calibration [ability to accurately assess their performance]) and the way they use the electronic health record (EHR) may be two important, yet understudied factors contributing to diagnostic error. These areas of research and an educational intervention to improve such factors to decrease error are the focus of this proposal. This research addresses the overall goal of high quality and safe care for Veterans and the use of health care informatics, a VA HSR&D cross-cutting priority area, by understanding how physicians utilize the EHR to diagnose patients and how we can improve EHR use to improve diagnosis. Research plan. In this proposal, both cognitive characteristics of physicians and patterns of EHR use will be examined as they relate to diagnostic accuracy. Then, an educational intervention aimed at improving these factors will be developed and pilot-tested for the long-term goal of improving diagnostic accuracy and reducing diagnostic errors in Veterans. The specific aims of this research are to: Aim 1) examine the relationship between diagnostic accuracy and cognitive characteristics of physicians in a series of general medical vignettes, Aim 2) investigate patterns of EHR use during diagnostic decision making and related accuracy in a simulated, naturalistic EHR setting using standardized patients, and Aim 3) develop and pilot an educational intervention that provides assessment and feedback on diagnosis-related performance in a naturalistic EHR environment. We will use the SA in Adaptive Decision Making Framework from the human factors field to guide this work. Aim 1 will consist of measuring physicians' cognitive characteristics, including SA and metacognitive calibration obtained while physicians solve validated patient vignettes. Then the relationships between these characteristics and diagnostic accuracy on the vignettes will be examined. Aim 2 will utilize simulation and Naturalistic Decision Making (NDM) methods to examine how physicians utilize the EHR as they diagnose patient vignettes in a simulated EHR environment using standardized patients. These patterns of EHR use will be related to diagnostic accuracy, SA, and metacognitive calibration. Aim 3 will consist of the creation and piloting of an educational intervention aimed at improving factors related to diagnostic accuracy. Career plan. This multidisciplinary research, along with career development and mentoring plans to develop expertise in clinical diagnosis, clinical informatics, systems engineering/human factors, and educational interventions; will increase knowledge of diagnostic errors and enhance my ability to transition to an independent Veterans Affairs (VA) health services researcher.

External Links for this Project

NIH Reporter

Grant Number: IK2HX002586-01A1
Link: https://reporter.nih.gov/project-details/9612839



Dimensions for VA

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

Learn more about Dimensions for VA.

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
    Search Dimensions for this project

PUBLICATIONS:


Journal Articles

  1. Meyer AND, Scott TMT, Singh H. Adherence to National Guidelines for Timeliness of Test Results Communication to Patients in the Veterans Affairs Health Care System. JAMA Network Open. 2022 Apr 1; 5(4):e228568. [view]
  2. Zwaan L, El-Kareh R, Meyer AND, Hooftman J, Singh H. Advancing Diagnostic Safety Research: Results of a Systematic Research Priority Setting Exercise. Journal of general internal medicine. 2021 Oct 1; 36(10):2943-2951. [view]
  3. Bradford A, Meyer AND, Khan S, Giardina TD, Singh H. Diagnostic error in mental health: a review. BMJ quality & safety. 2024 Sep 19; 33(10):663-672. [view]
  4. Rubin G, Meyer AND. Diagnostic errors and harms in primary care: insights to action. BMJ quality & safety. 2021 Dec 1; 30(12):930-932. [view]
  5. Savoy A, Patel H, Murphy DR, Meyer AND, Herout J, Singh H. Electronic Health Records' Support for Primary Care Physicians' Situation Awareness: A Metanarrative Review. Human Factors. 2023 Mar 1; 65(2):237-259. [view]
  6. Rajan SS, Sarvepalli S, Wei L, Meyer AND, Murphy DR, Choi DT, Singh H. Medical Home Implementation and Follow-Up of Cancer-Related Abnormal Test Results in the Veterans Health Administration. JAMA Network Open. 2024 Mar 4; 7(3):e240087. [view]
  7. Meyer AND, Giardina TD, Khawaja L, Singh H. Patient and clinician experiences of uncertainty in the diagnostic process: Current understanding and future directions. Patient education and counseling. 2021 Nov 1; 104(11):2606-2615. [view]
  8. Meyer AND, Giardina TD, Spitzmueller C, Shahid U, Scott TMT, Singh H. Patient Perspectives on the Usefulness of an Artificial Intelligence-Assisted Symptom Checker: Cross-Sectional Survey Study. Journal of medical Internet research. 2020 Jan 30; 22(1):e14679. [view]
  9. Meyer AND, Singh H. The Path to Diagnostic Excellence Includes Feedback to Calibrate How Clinicians Think. JAMA. 2019 Feb 26; 321(8):737-738. [view]
HSR&D or QUERI Articles

  1. Meyer A, Singh H. Using Electronic Health Records to Improve Diagnoses. FORUM : Translating Research into Quality Healthcare for Veterans. 2019 Jan 2; 2018(Winter): 4. [view]


DRA: Health Systems Science
DRE: Prevention, TRL - Applied/Translational
Keywords: None at this time.
MeSH Terms: None at this time.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.