Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Using network projections to explore co-incidence and context in large clinical datasets: Application to homelessness among U.S. Veterans.

Pettey WB, Toth DJ, Redd A, Carter ME, Samore MH, Gundlapalli AV. Using network projections to explore co-incidence and context in large clinical datasets: Application to homelessness among U.S. Veterans. Journal of Biomedical Informatics. 2016 Jun 1; 61:203-13.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

INTRODUCTION: Network projections of data can provide an efficient format for data exploration of co-incidence in large clinical datasets. We present and explore the utility of a network projection approach to finding patterns in health care data that could be exploited to prevent homelessness among U.S. Veterans. METHOD: We divided Veteran ICD-9-CM (ICD9) data into two time periods (0-59 and 60-364days prior to the first evidence of homelessness) and then used Pajek social network analysis software to visualize these data as three different networks. A multi-relational network simultaneously displayed the magnitude of ties between the most frequent ICD9 pairings. A new association network visualized ICD9 pairings that greatly increased or decreased. A signed, subtraction network visualized the presence, absence, and magnitude difference between ICD9 associations by time period. RESULT: A cohort of 9468 U.S. Veterans was identified as having administrative evidence of homelessness and visits in both time periods. They were seen in 222,599 outpatient visits that generated 484,339 ICD9 codes (average of 11.4 (range 1-23) visits and 2.2 (range 1-60) ICD9 codes per visit). Using the three network projection methods, we were able to show distinct differences in the pattern of co-morbidities in the two time periods. In the more distant time period preceding homelessness, the network was dominated by routine health maintenance visits and physical ailment diagnoses. In the 59days immediately prior to the homelessness identification, alcohol related diagnoses along with economic circumstances such as unemployment, legal circumstances, along with housing instability were noted. CONCLUSION: Network visualizations of large clinical datasets traditionally treated as tabular and difficult to manipulate reveal rich, previously hidden connections between data variables related to homelessness. A key feature is the ability to visualize changes in variables with temporality and in proximity to the event of interest. These visualizations lend support to cognitive tasks such as exploration of large clinical datasets as a prelude to hypothesis generation.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.