Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Body Composition Features Predict Overall Survival in Patients With Hepatocellular Carcinoma.

Singal AG, Zhang P, Waljee AK, Ananthakrishnan L, Parikh ND, Sharma P, Barman P, Krishnamurthy V, Wang L, Wang SC, Su GL. Body Composition Features Predict Overall Survival in Patients With Hepatocellular Carcinoma. Clinical and translational gastroenterology. 2016 May 26; 7:e172.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


OBJECTIVES: Existing prognostic models for patients with hepatocellular carcinoma (HCC) have limitations. Analytic morphomics, a novel process to measure body composition using computational image-processing algorithms, may offer further prognostic information. The aim of this study was to develop and validate a prognostic model for HCC patients using body composition features and objective clinical information. METHODS: Using computed tomography scans from a cohort of HCC patients at the VA Ann Arbor Healthcare System between January 2006 and December 2013, we developed a prognostic model using analytic morphomics and routine clinical data based on multivariate Cox regression and regularization methods. We assessed model performance using C-statistics and validated predicted survival probabilities. We validated model performance in an external cohort of HCC patients from Parkland Hospital, a safety-net health system in Dallas County. RESULTS: The derivation cohort consisted of 204 HCC patients (20.1% Barcelona Clinic Liver Cancer classification (BCLC) 0/A), and the validation cohort had 225 patients (22.2% BCLC 0/A). The analytic morphomics model had good prognostic accuracy in the derivation cohort (C-statistic 0.80, 95% confidence interval (CI) 0.71-0.89) and external validation cohort (C-statistic 0.75, 95% CI 0.68-0.82). The accuracy of the analytic morphomics model was significantly higher than that of TNM and BCLC staging systems in derivation (P < 0.001 for both) and validation (P < 0.001 for both) cohorts. For calibration, mean absolute errors in predicted 1-year survival probabilities were 5.3% (90% quantile of 7.5%) and 7.6% (90% quantile of 12.5%) in the derivation and validation cohorts, respectively. CONCLUSION: Body composition features, combined with readily available clinical data, can provide valuable prognostic information for patients with newly diagnosed HCC.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.