Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A Novel Design for Drug-Drug Interaction Alerts Improves Prescribing Efficiency.

Russ AL, Chen S, Melton BL, Johnson EG, Spina JR, Weiner M, Zillich AJ. A Novel Design for Drug-Drug Interaction Alerts Improves Prescribing Efficiency. Joint Commission Journal on Quality and Patient Safety. 2015 Sep 1; 41(9):396-405.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


BACKGROUND: Drug-drug interactions (DDIs) are common in clinical care and pose serious risks for patients. Electronic health records display DDI alerts that can influence prescribers, but the interface design of DDI alerts has largely been unstudied. In this study, the objective was to apply human factors engineering principles to alert design. It was hypothesized that redesigned DDI alerts would significantly improve prescribers' efficiency and reduce prescribing errors. METHODS: In a counterbalanced, crossover study with prescribers, two DDI alert designs were evaluated. Department of Veterans Affairs (VA) prescribers were video recorded as they completed fictitious patient scenarios, which included DDI alerts of varying severity. Efficiency was measured from time-stamped recordings. Prescribing errors were evaluated against predefined criteria. Efficiency and prescribing errors were analyzed with the Wilcoxon signed-rank test. Other usability data were collected on the adequacy of alert content, prescribers' use of the DDI monograph, and alert navigation. RESULTS: Twenty prescribers completed patient scenarios for both designs. Prescribers resolved redesigned alerts in about half the time (redesign: 52 seconds versus original design: 97 seconds; p < .001). Prescribing errors were not significantly different between the two designs. Usability results indicate that DDI alerts might be enhanced by facilitating easier access to laboratory data and dosing information and by allowing prescribers to cancel either interacting medication directly from the alert. Results also suggest that neither design provided adequate information for decision making via the primary interface. CONCLUSION: Applying human factors principles to DDI alerts improved overall efficiency. Aspects of DDI alert design that could be further enhanced prior to implementation were also identified.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.