skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A probability metric for identifying high-performing facilities: an application for pay-for-performance programs.

Shwartz M, Peköz EA, Burgess JF, Christiansen CL, Rosen AK, Berlowitz D. A probability metric for identifying high-performing facilities: an application for pay-for-performance programs. Medical care. 2014 Dec 1; 52(12):1030-6.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


BACKGROUND: Two approaches are commonly used for identifying high-performing facilities on a performance measure: one, that the facility is in a top quantile (eg, quintile or quartile); and two, that a confidence interval is below (or above) the average of the measure for all facilities. This type of yes/no designation often does not do well in distinguishing high-performing from average-performing facilities. OBJECTIVE: To illustrate an alternative continuous-valued metric for profiling facilities--the probability a facility is in a top quantile--and show the implications of using this metric for profiling and pay-for-performance. METHODS: We created a composite measure of quality from fiscal year 2007 data based on 28 quality indicators from 112 Veterans Health Administration nursing homes. A Bayesian hierarchical multivariate normal-binomial model was used to estimate shrunken rates of the 28 quality indicators, which were combined into a composite measure using opportunity-based weights. Rates were estimated using Markov Chain Monte Carlo methods as implemented in WinBUGS. The probability metric was calculated from the simulation replications. RESULTS: Our probability metric allowed better discrimination of high performers than the point or interval estimate of the composite score. In a pay-for-performance program, a smaller top quantile (eg, a quintile) resulted in more resources being allocated to the highest performers, whereas a larger top quantile (eg, being above the median) distinguished less among high performers and allocated more resources to average performers. CONCLUSION: The probability metric has potential but needs to be evaluated by stakeholders in different types of delivery systems.

Questions about the HSR&D website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.