Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement.

Woolson ST, Harris AH, Wagner DW, Giori NJ. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. The Journal of Bone and Joint Surgery. 2014 Mar 5; 96(5):366-72.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Patient-specific femoral and tibial cutting blocks produced with use of data from preoperative computed tomography (CT) or magnetic resonance imaging (MRI) scans have been employed recently to optimize component alignment in total knee arthroplasty. We report the results of a randomized controlled trial in which CT scans were used to compare postoperative component alignment between patients treated with custom instruments and those managed with traditional instruments. METHODS: The in-hospital data and early clinical outcomes, including Knee Society scores, were determined in a randomized clinical trial of forty-seven patients who had undergone a total of forty-eight primary total knee arthroplasties with patient-specific instruments (twenty-two knees) or standard instruments (twenty-six knees). Orientation of the implants was compared by using three-dimensional CT data. RESULTS: No significant differences were found between the study and control groups with respect to any clinical outcome after a minimum of six months of follow-up. The patient-specific tibial cutting block was abandoned in favor of a standard external alignment jig in seven of the twenty-two study knees because of possible malalignment. A detailed analysis of intent-to-treat and per-protocol groups of study and control knees did not show any significant improvement in component alignment, including femoral component rotation in the axial plane, in the patients treated with the custom instruments. The percentage of outliers--defined as less than -3 or more than 3 from the correct orientation of the tibial slope--was significantly higher in the group treated with use of patient-specific blocks than it was in the control group, in both the intent-to-treat (32% versus 8%, p = 0.032) and the per-protocol (47% versus 6%, p = 0.0008) analysis. CONCLUSIONS: There were no significant improvements in clinical outcomes or knee component alignment in patients treated with patient-specific cutting blocks as compared with those treated with standard instruments. The group treated with patient-specific cutting blocks had a significantly higher prevalence of malalignment in terms of tibial component slope than the knees treated with standard instruments.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.