Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Cigarette smoke condensate induces aryl hydrocarbon receptor-dependent changes in gene expression in spermatocytes.

Esakky P, Hansen DA, Drury AM, Moley KH. Cigarette smoke condensate induces aryl hydrocarbon receptor-dependent changes in gene expression in spermatocytes. Reproductive toxicology (Elmsford, N.Y.). 2012 Dec 1; 34(4):665-76.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Cigarette smoke contains numerous compounds that cause oxidative stress and alter gene expression in many tissues, and cigarette smoking is correlated with male infertility. To identify mechanisms by which this occurs, we evaluated expression of antioxidant genes in mouse spermatocytes in response to cigarette smoke condensate (CSC). CSC exposure led to oxidative stress and dose-dependent up-regulation of Hsp90aa1, Ahr, Arnt, Sod1, Sod2, and Cyp1a1 expression in a mouse spermatocyte cell line. An antagonist of the aryl hydrocarbon receptor (AHR) abrogated several CSC-mediated changes in mRNA and protein levels. Consistent with these results, spermatocytes isolated by laser-capture microdissection from CSC-treated mice showed increased expression of several antioxidant genes. In vivo exposure to CSC was genotoxic to spermatocytes, resulting in apoptosis and disruptions to the seminiferous tubules. Our in vivo and in vitro data indicate that CSC-mediated damage to murine spermatocytes is AHR-dependent and is mediated by oxidative stress.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.