Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Estimating a composite measure of hospital quality from the Hospital Compare database: differences when using a Bayesian hierarchical latent variable model versus denominator-based weights.

Shwartz M, Ren J, Peköz EA, Wang X, Cohen AB, Restuccia JD. Estimating a composite measure of hospital quality from the Hospital Compare database: differences when using a Bayesian hierarchical latent variable model versus denominator-based weights. Medical care. 2008 Aug 1; 46(8):778-85.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: A single composite measure calculated from individual quality indicators (QIs) is a useful measure of hospital performance and can be justified conceptually even when the indicators are not highly correlated with one another. OBJECTIVE: To compare 2 basic approaches for calculating a composite measure: an extension of the most widely-used approach, which weights individual indicators based on the number of people eligible for the indicator (referred to as denominator-based weights, DBWs), and a Bayesian hierarchical latent variable model (BLVM). METHODS: Using data for 15 QIs from 3275 hospitals in the Hospital Compare database, we calculated hospital ranks using several versions of DBWs and 2 BLVMs. Estimates in 1 BLVM were driven by differences in variances of the QIs (BLVM1) and estimates in the other by differences in the signal-to-noise ratios of the QIs (BLVM2). RESULTS: There was a high correlation in ranks among all of the DBW approaches and between those approaches and BLVM1. However, a high correlation does not necessarily mean that the same hospitals were ranked in the top or bottom quality deciles. In general, large hospitals were ranked in higher quality deciles by all of the approaches, though the effect was most apparent using BLVM2. CONCLUSIONS: Both conceptually and practically, hospital-specific DBWs are a reasonable approach for calculating a composite measure. However, this approach fails to take into account differences in the reliability of estimates from hospitals of different sizes, a big advantage of the Bayesian models.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.