Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Identifying barriers to hypertension guideline adherence using clinician feedback at the point of care

Lin ND, Martins SB, Chan AS, Coleman RW, Bosworth HB, Oddone EZ, Shankar RD, Musen MA, Hoffman BB, Goldstein MK. Identifying barriers to hypertension guideline adherence using clinician feedback at the point of care. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium. 2006 Jan 1; 494-8.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Factors contributing to low adherence to clinical guidelines by clinicians are not well understood. The user interface of ATHENA-HTN, a guideline-based decision support system (DSS) for hypertension, presents a novel opportunity to collect clinician feedback on recommendations displayed at the point of care. We analyzed feedback from 46 clinicians who received ATHENA advisories as part of a 15-month randomized trial to identify potential reasons clinicians may not intensify hypertension therapy when it is recommended. Among the 368 visits for which feedback was provided, clinicians commonly reported they did not follow recommendations because: recorded blood pressure was not representative of the patient's typical blood pressure; hypertension was not a clinical priority for the visit; or patients were nonadherent to medications. For many visits, current quality-assurance algorithms may incorrectly identify clinically appropriate decisions as guideline nonadherent due to incomplete capture of relevant information. We present recommendations for how automated DSSs may help identify "apparent" barriers and better target decision support.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.