Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A case study on generative artificial intelligence to extract the fundamental sleep parameters from polysomnography notes.

Maghsoudi A, Sharafkhaneh A, Azarian M, Ramezani A, Hirshkowitz M, Razjouyan J. A case study on generative artificial intelligence to extract the fundamental sleep parameters from polysomnography notes. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine. 2025 Feb 27 DOI: 10.5664/jcsm.11594.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Generative artificial intelligence (AI) utilizing transformer technology is widely seen as a groundbreaking advancement in applied artificial intelligence. The technology creates a unique opportunity to extract unstructured data from medical notes. In the current experiments, we extracted fundamental sleep parameters from polysomnography (PSG) notes of veterans in the Corporate Data Warehouse (CDW) national database using large language models. The "SOLAR-10.7B-Instruct" model extracted values associated with total sleep time (TST), sleep onset latency (SOL), and sleep efficiency (SE) from the PSG notes. The model''s performance was evaluated using 464 human annotated notes. The analysis showed close accuracy for the large language model (LLM) compared to the human TST and SE extraction, and a considerable accuracy improvement (7.6%) in extracting SOL for the machine compared to human annotation. The LLM shows negligible hallucination (no more than 3.6%), and it has the capability to perform complicated reasoning to extract the desired sleep parameter.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.