Search | Search by Center | Search by Source | Keywords in Title
J Hayes C, Bin Noor N, Raciborski RA, C Martin B, J Gordon A, J Hoggatt K, Hudson T, A Cucciare M. Development and validation of machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans treated with buprenorphine for opioid use disorder. Journal of addictive diseases. 2024 Jun 30; 1-18.
BACKGROUND: Buprenorphine for opioid use disorder (B-MOUD) is essential to improving patient outcomes; however, retention is essential. OBJECTIVE: To develop and validate machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans initiating B-MOUD. METHODS: Veterans initiating B-MOUD from fiscal years 2006-2020 were identified. Veterans' B-MOUD episodes were randomly divided into training (80%; = 45,238) and testing samples (20%; = 11,309). Candidate algorithms [multiple logistic regression, least absolute shrinkage and selection operator regression, random forest (RF), gradient boosting machine (GBM), and deep neural network (DNN)] were used to build and validate classification models to predict six binary outcomes: 1) B-MOUD retention, 2) any overdose, 3) opioid-related overdose, 4) overdose death, 5) opioid overdose death, and 6) all-cause mortality. Model performance was assessed using standard classification statistics [e.g., area under the receiver operating characteristic curve (AUC-ROC)]. RESULTS: Episodes in the training sample were 93.0% male, 78.0% White, 72.3% unemployed, and 48.3% had a concurrent drug use disorder. The GBM model slightly outperformed others in predicting B-MOUD retention (AUC-ROC = 0.72). RF models outperformed others in predicting any overdose (AUC-ROC = 0.77) and opioid overdose (AUC-ROC = 0.77). RF and GBM outperformed other models for overdose death (AUC-ROC = 0.74 for both), and RF and DNN outperformed other models for opioid overdose death (RF AUC-ROC = 0.79; DNN AUC-ROC = 0.78). RF and GBM also outperformed other models for all-cause mortality (AUC-ROC = 0.76 for both). No single predictor accounted for > 3% of the model's variance. CONCLUSIONS: Machine-learning algorithms can accurately predict OUD-related outcomes with moderate predictive performance; however, prediction of these outcomes is driven by many characteristics.