Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt.

Yang Z, Kwon S, Yao Z, Yu H. Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt. Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence. 2023 Jun 26; 37(4):5366-5374.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with an average of 3,000+ tokens. This task is challenging due to the high-dimensional space of multi-label assignment (155,000+ ICD code candidates) and the long-tail challenge - Many ICD codes are infrequently assigned yet infrequent ICD codes are important clinically. This study addresses the long-tail challenge by transforming this multi-label classification task into an autoregressive generation task. Specifically, we first introduce a novel pretraining objective to generate free text diagnoses and procedures using the SOAP structure, the medical logic physicians use for note documentation. Second, instead of directly predicting the high dimensional space of ICD codes, our model generates the lower dimension of text descriptions, which then infers ICD codes. Third, we designed a novel prompt template for multi-label classification. We evaluate our Generation with Prompt (GP) model with the benchmark of all code assignment (MIMIC-III-full) and few shot ICD code assignment evaluation benchmark (MIMIC-III-few). Experiments on MIMIC-III-few show that our model performs with a marco F130.2, which substantially outperforms the previous MIMIC-III-full SOTA model (marco F1 4.3) and the model specifically designed for few/zero shot setting (marco F1 18.7). Finally, we design a novel ensemble learner, a cross-attention reranker with prompts, to integrate previous SOTA and our best few-shot coding predictions. Experiments on MIMIC-III-full show that our ensemble learner substantially improves both macro and micro F1, from 10.4 to 14.6 and from 58.2 to 59.1, respectively.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.