Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Evaluation of a Model to Target High-risk Psychiatric Inpatients for an Intensive Postdischarge Suicide Prevention Intervention.

Kessler RC, Bauer MS, Bishop TM, Bossarte RM, Castro VM, Demler OV, Gildea SM, Goulet JL, King AJ, Kennedy CJ, Landes SJ, Liu H, Luedtke A, Mair P, Marx BP, Nock MK, Petukhova MV, Pigeon WR, Sampson NA, Smoller JW, Miller A, Haas G, Benware J, Bradley J, Owen RR, House S, Urosevic S, Weinstock LM. Evaluation of a Model to Target High-risk Psychiatric Inpatients for an Intensive Postdischarge Suicide Prevention Intervention. JAMA psychiatry. 2023 Mar 1; 80(3):230-240.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

IMPORTANCE: The months after psychiatric hospital discharge are a time of high risk for suicide. Intensive postdischarge case management, although potentially effective in suicide prevention, is likely to be cost-effective only if targeted at high-risk patients. A previously developed machine learning (ML) model showed that postdischarge suicides can be predicted from electronic health records and geospatial data, but it is unknown if prediction could be improved by adding additional information. OBJECTIVE: To determine whether model prediction could be improved by adding information extracted from clinical notes and public records. DESIGN, SETTING, AND PARTICIPANTS: Models were trained to predict suicides in the 12 months after Veterans Health Administration (VHA) short-term (less than 365 days) psychiatric hospitalizations between the beginning of 2010 and September 1, 2012 (299?050 hospitalizations, with 916 hospitalizations followed within 12 months by suicides) and tested in the hospitalizations from September 2, 2012, to December 31, 2013 (149?738 hospitalizations, with 393 hospitalizations followed within 12 months by suicides). Validation focused on net benefit across a range of plausible decision thresholds. Predictor importance was assessed with Shapley additive explanations (SHAP) values. Data were analyzed from January to August 2022. MAIN OUTCOMES AND MEASURES: Suicides were defined by the National Death Index. Base model predictors included VHA electronic health records and patient residential data. The expanded predictors came from natural language processing (NLP) of clinical notes and a social determinants of health (SDOH) public records database. RESULTS: The model included 448?788 unique hospitalizations. Net benefit over risk horizons between 3 and 12 months was generally highest for the model that included both NLP and SDOH predictors (area under the receiver operating characteristic curve range, 0.747-0.780; area under the precision recall curve relative to the suicide rate range, 3.87-5.75). NLP and SDOH predictors also had the highest predictor class-level SHAP values (proportional SHAP? = 64.0% and 49.3%, respectively), although the single highest positive variable-level SHAP value was for a count of medications classified by the US Food and Drug Administration as increasing suicide risk prescribed the year before hospitalization (proportional SHAP? = 15.0%). CONCLUSIONS AND RELEVANCE: In this study, clinical notes and public records were found to improve ML model prediction of suicide after psychiatric hospitalization. The model had positive net benefit over 3-month to 12-month risk horizons for plausible decision thresholds. Although caution is needed in inferring causality based on predictor importance, several key predictors have potential intervention implications that should be investigated in future studies.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.