skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A translational genomics approach identifies IL10RB as the top candidate gene target for COVID-19 susceptibility.

Voloudakis G, Vicari JM, Venkatesh S, Hoffman GE, Dobrindt K, Zhang W, Beckmann ND, Higgins CA, Argyriou S, Jiang S, Hoagland D, Gao L, Corvelo A, Cho K, Lee KM, Bian J, Lee JS, Iyengar SK, Luoh SW, Akbarian S, Striker R, Assimes TL, Schadt EE, Lynch JA, Merad M, tenOever BR, Charney AW, Mount Sinai COVID-19 Biobank, VA Million Veteran Program COVID-19 Science Initiative, Brennand KJ, Fullard JF, Roussos P. A translational genomics approach identifies IL10RB as the top candidate gene target for COVID-19 susceptibility. NPJ genomic medicine. 2022 Sep 5; 7(1):52.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 (COVID-19) infection rates and disease outcome severity. Translating these genetic findings into druggable genes that reduce COVID-19 host susceptibility is a critical next step. Using a translational genomics approach that integrates COVID-19 genetic susceptibility variants, multi-tissue genetically regulated gene expression (GReX), and perturbagen signatures, we identified IL10RB as the top candidate gene target for COVID-19 host susceptibility. In a series of validation steps, we show that predicted GReX upregulation of IL10RB and higher IL10RB expression in COVID-19 patient blood is associated with worse COVID-19 outcomes and that in vitro IL10RB overexpression is associated with increased viral load and activation of disease-relevant molecular pathways.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.