Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Suicide theory-guided natural language processing of clinical progress notes to improve prediction of veteran suicide risk: protocol for a mixed-method study.

Meerwijk EL, Tamang SR, Finlay AK, Ilgen MA, Reeves RM, Harris AHS. Suicide theory-guided natural language processing of clinical progress notes to improve prediction of veteran suicide risk: protocol for a mixed-method study. BMJ open. 2022 Aug 24; 12(8):e065088.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

INTRODUCTION: The state-of-the-art 3-step Theory of Suicide (3ST) describes why people consider suicide and who will act on their suicidal thoughts and attempt suicide. The central concepts of 3ST-psychological pain, hopelessness, connectedness, and capacity for suicide-are among the most important drivers of suicidal behaviour but they are missing from clinical suicide risk prediction models in use at the US Veterans Health Administration (VHA). These four concepts are not systematically recorded in structured fields of VHA''s electronic healthcare records. Therefore, this study will develop a domain-specific ontology that will enable automated extraction of these concepts from clinical progress notes using natural language processing (NLP), and test whether NLP-based predictors for these concepts improve accuracy of existing VHA suicide risk prediction models. METHODS AND ANALYSIS: Our mixed-method study has an exploratory sequential design where a qualitative component (aim 1) will inform quantitative analyses (aims 2 and 3). For aim 1, subject matter experts will manually annotate progress notes of clinical encounters with veterans who attempted or died by suicide to develop a domain-specific ontology for the 3ST concepts. During aim 2, we will use NLP to machine-annotate clinical progress notes and derive longitudinal representations for each patient with respect to the presence and intensity of hopelessness, psychological pain, connectedness and capacity for suicide in temporal proximity of suicide attempts and deaths by suicide. These longitudinal representations will be evaluated during aim 3 for their ability to improve existing VHA prediction models of suicide and suicide attempts, STORM (Stratification Tool for Opioid Risk Mitigation) and REACHVET (Recovery Engagement and Coordination for Health - Veterans Enhanced Treatment). ETHICS AND DISSEMINATION: Ethics approval for this study was granted by the Stanford University Institutional Review Board and the Research and Development Committee of the VA Palo Alto Health Care System. Results of the study will be disseminated through several outlets, including peer-reviewed publications and presentations at national conferences.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.