Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Data-driven approach to implementation mapping for the selection of implementation strategies: a case example for risk-aligned bladder cancer surveillance.

Schroeck FR, Ould Ismail AA, Haggstrom DA, Sanchez SL, Walker DR, Zubkoff L. Data-driven approach to implementation mapping for the selection of implementation strategies: a case example for risk-aligned bladder cancer surveillance. Implementation science : IS. 2022 Sep 1; 17(1):58.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


BACKGROUND: Implementation Mapping is an organized method to select implementation strategies. However, there are 73 Expert Recommendations for Implementing Change (ERIC) strategies. Thus, it is difficult for implementation scientists to map all potential strategies to the determinants of their chosen implementation science framework. Prior work using Implementation Mapping employed advisory panels to select implementation strategies. This article presents a data-driven approach to implementation mapping, in which we systematically evaluated all 73 ERIC strategies using the Tailored Implementation for Chronic Diseases (TICD) framework. We illustrate our approach using implementation of risk-aligned bladder cancer surveillance as a case example. METHODS: We developed objectives based on previously collected qualitative data organized by TICD determinants, i.e., what needs to be changed to achieve more risk-aligned surveillance. Next, we evaluated all 73 ERIC strategies, excluding those that were not applicable to our clinical setting. The remaining strategies were mapped to the objectives using data visualization techniques to make sense of the large matrices. Finally, we selected strategies with high impact, based on (1) broad scope, defined as a strategy addressing more than the median number of objectives, (2) requiring low or moderate time commitment from clinical teams, and (3) evidence of effectiveness from the literature. RESULTS: We identified 63 unique objectives. Of the 73 ERIC strategies, 45 were excluded because they were not applicable to our clinical setting (e.g., not feasible within the confines of the setting, not appropriate for the context). Thus, 28 ERIC strategies were mapped to the 63 objectives. Strategies addressed 0 to 26 objectives (median 10.5). Of the 28 ERIC strategies, 10 required low and 8 moderate time commitments from clinical teams. We selected 9 strategies based on high impact, each with a clearly documented rationale for selection. CONCLUSIONS: We enhanced Implementation Mapping via a data-driven approach to the selection of implementation strategies. Our approach provides a practical method for other implementation scientists to use when selecting implementation strategies and has the advantage of favoring data-driven strategy selection over expert opinion.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.