Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Development and Validation of Machine Models Using Natural Language Processing to Classify Substances Involved in Overdose Deaths.

Goodman-Meza D, Shover CL, Medina JA, Tang AB, Shoptaw S, Bui AAT. Development and Validation of Machine Models Using Natural Language Processing to Classify Substances Involved in Overdose Deaths. JAMA Network Open. 2022 Aug 1; 5(8):e2225593.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Importance: Overdose is one of the leading causes of death in the US; however, surveillance data lag considerably from medical examiner determination of the death to reporting in national surveillance reports. Objective: To automate the classification of deaths related to substances in medical examiner data using natural language processing (NLP) and machine learning (ML). Design, Setting, and Participants: Diagnostic study comparing different natural language processing and machine learning algorithms to identify substances related to overdose in 10 health jurisdictions in the US from January 1, 2020, to December 31, 2020. Unstructured text from 35 433 medical examiner and coroners' death records was examined. Exposures: Text from each case was manually classified to a substance that was related to the death. Three feature representation methods were used and compared: text frequency-inverse document frequency (TF-IDF), global vectors for word representations (GloVe), and concept unique identifier (CUI) embeddings. Several ML algorithms were trained and best models were selected based on F-scores. The best models were tested on a hold-out test set and results were reported with 95% CIs. Main Outcomes and Measures: Text data from death certificates were classified as any opioid, fentanyl, alcohol, cocaine, methamphetamine, heroin, prescription opioid, and an aggregate of other substances. Diagnostic metrics and 95% CIs were calculated for each combination of feature extraction method and machine learning classifier. Results: Of 35 433 death records analyzed (decedent median age, 58 years [IQR, 41-72 years]; 24 449 [69%] were male), the most common substances related to deaths included any opioid (5739 [16%]), fentanyl (4758 [13%]), alcohol (2866 [8%]), cocaine (2247 [6%]), methamphetamine (1876 [5%]), heroin (1613 [5%]), prescription opioids (1197 [3%]), and any benzodiazepine (1076 [3%]). The CUI embeddings had similar or better diagnostic metrics compared with word embeddings and TF-IDF for all substances except alcohol. ML classifiers had perfect or near perfect performance in classifying deaths related to any opioids, heroin, fentanyl, prescription opioids, methamphetamine, cocaine, and alcohol. Classification of benzodiazepines was suboptimal using all 3 feature extraction methods. Conclusions and Relevance: In this diagnostic study, NLP/ML algorithms demonstrated excellent diagnostic performance at classifying substances related to overdoses. These algorithms should be integrated into workflows to decrease the lag time in reporting overdose surveillance data.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.