skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Derivation and external validation of a simple risk score to predict in-hospital mortality in patients hospitalized for COVID-19: A multicenter retrospective cohort study.

Mann CZ, Abshire C, Yost M, Kaatz S, Swaminathan L, Flanders SA, Prescott HC, Gagnon-Bartsch JA. Derivation and external validation of a simple risk score to predict in-hospital mortality in patients hospitalized for COVID-19: A multicenter retrospective cohort study. Medicine. 2021 Oct 8; 100(40):e27422.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

ABSTRACT: As severe acute respiratory syndrome coronavirus 2 continues to spread, easy-to-use risk models that predict hospital mortality can assist in clinical decision making and triage. We aimed to develop a risk score model for in-hospital mortality in patients hospitalized with 2019 novel coronavirus (COVID-19) that was robust across hospitals and used clinical factors that are readily available and measured standardly across hospitals.In this retrospective observational study, we developed a risk score model using data collected by trained abstractors for patients in 20 diverse hospitals across the state of Michigan (Mi-COVID19) who were discharged between March 5, 2020 and August 14, 2020. Patients who tested positive for severe acute respiratory syndrome coronavirus 2 during hospitalization or were discharged with an ICD-10 code for COVID-19 (U07.1) were included. We employed an iterative forward selection approach to consider the inclusion of 145 potential risk factors available at hospital presentation. Model performance was externally validated with patients from 19 hospitals in the Mi-COVID19 registry not used in model development. We shared the model in an easy-to-use online application that allows the user to predict in-hospital mortality risk for a patient if they have any subset of the variables in the final model.Two thousand one hundred and ninety-three patients in the Mi-COVID19 registry met our inclusion criteria. The derivation and validation sets ultimately included 1690 and 398 patients, respectively, with mortality rates of 19.6% and 18.6%, respectively. The average age of participants in the study after exclusions was 64 years old, and the participants were 48% female, 49% Black, and 87% non-Hispanic. Our final model includes the patient's age, first recorded respiratory rate, first recorded pulse oximetry, highest creatinine level on day of presentation, and hospital's COVID-19 mortality rate. No other factors showed sufficient incremental model improvement to warrant inclusion. The area under the receiver operating characteristics curve for the derivation and validation sets were .796 (95% confidence interval, .767-.826) and .829 (95% confidence interval, .782-.876) respectively.We conclude that the risk of in-hospital mortality in COVID-19 patients can be reliably estimated using a few factors, which are standardly measured and available to physicians very early in a hospital encounter.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.