Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study.

May SB, Giordano TP, Gottlieb A. A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study. JMIR formative research. 2021 Nov 25; 5(11):e28620.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


BACKGROUND: Identification of people with HIV from electronic health record (EHR) data is an essential first step in the study of important HIV outcomes, such as risk assessment. This task has been historically performed via manual chart review, but the increased availability of large clinical data sets has led to the emergence of phenotyping algorithms to automate this process. Existing algorithms for identifying people with HIV rely on a combination of International Classification of Disease codes and laboratory tests or closely mimic clinical testing guidelines for HIV diagnosis. However, we found that existing algorithms in the literature missed a significant proportion of people with HIV in our data. OBJECTIVE: The aim of this study is to develop and evaluate HIV-Phen, an updated criteria-based HIV phenotyping algorithm. METHODS: We developed an algorithm using HIV-specific laboratory tests and medications and compared it with previously published algorithms in national and local data sets to identify cohorts of people with HIV. Cohort demographics were compared with those reported in the national and local surveillance data. Chart reviews were performed on a subsample of patients from the local database to calculate the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the algorithm. RESULTS: Our new algorithm identified substantially more people with HIV in both national (up to an 85.75% increase) and local (up to an 83.20% increase) EHR databases than the previously published algorithms. The demographic characteristics of people with HIV identified using our algorithm were similar to those reported in national and local HIV surveillance data. Our algorithm demonstrated improved sensitivity over existing algorithms (98% vs 56%-92%) while maintaining a similar overall accuracy (96% vs 80%-96%). CONCLUSIONS: We developed and evaluated an updated criteria-based phenotyping algorithm for identifying people with HIV in EHR data that demonstrates improved sensitivity over existing algorithms.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.