skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Measuring pain care quality in the Veterans Health Administration primary care setting.

Luther SL, Finch DK, Bouayad L, McCart J, Han L, Dobscha SK, Skanderson M, Fodeh SJ, Hahm B, Lee A, Goulet JL, Brandt CA, Kerns RD. Measuring pain care quality in the Veterans Health Administration primary care setting. Pain. 2022 Jun 1; 163(6):e715-e724.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


The lack of a reliable approach to assess quality of pain care hinders quality improvement initiatives. Rule-based natural language processing algorithms were used to extract pain care quality (PCQ) indicators from documents of Veterans Health Administration primary care providers for veterans diagnosed within the past year with musculoskeletal disorders with moderate-to-severe pain intensity across 2 time periods 2013 to 2014 (fiscal year [FY] 2013) and 2017 to 2018 (FY 2017). Patterns of documentation of PCQ indicators for 64,444 veterans and 124,408 unique visits (FY 2013) and 63,427 veterans and 146,507 visits (FY 2017) are described. The most commonly documented PCQ indicators in each cohort were presence of pain, etiology or source, and site of pain (greater than 90% of progress notes), while least commonly documented were sensation, what makes pain better or worse, and pain''s impact on function (documented in fewer than 50%). A PCQ indicator score (maximum = 12) was calculated for each visit in FY 2013 (mean = 7.8, SD = 1.9) and FY 2017 (mean = 8.3, SD = 2.3) by adding one point for every indicator documented. Standardized Cronbach alpha for total PCQ scores was 0.74 in the most recent data (FY 2017). The mean PCQ indicator scores across patient characteristics and types of healthcare facilities were highly stable. Estimates of the frequency of documentation of PCQ indicators have face validity and encourage further evaluation of the reliability, validity, and utility of the measure. A reliable measure of PCQ fills an important scientific knowledge and practice gap.

Questions about the HSR&D website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.