Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Exchanges in a Virtual Environment for Diabetes Self-Management Education and Support: Social Network Analysis.

Pérez-Aldana CA, Lewinski AA, Johnson CM, Vorderstrasse AA, Myneni S. Exchanges in a Virtual Environment for Diabetes Self-Management Education and Support: Social Network Analysis. JMIR diabetes. 2021 Jan 25; 6(1):e21611.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Diabetes remains a major health problem in the United States, affecting an estimated 10.5% of the population. Diabetes self-management interventions improve diabetes knowledge, self-management behaviors, and clinical outcomes. Widespread internet connectivity facilitates the use of eHealth interventions, which positively impacts knowledge, social support, and clinical and behavioral outcomes. In particular, diabetes interventions based on virtual environments have the potential to improve diabetes self-efficacy and support, while being highly feasible and usable. However, little is known about the patterns of social interactions and support taking place within type 2 diabetes-specific virtual communities. OBJECTIVE: The objective of this study was to examine social support exchanges from a type 2 diabetes self-management education and support intervention that was delivered via a virtual environment. METHODS: Data comprised virtual environment-mediated synchronous interactions among participants and between participants and providers from an intervention for type 2 diabetes self-management education and support. Network data derived from such social interactions were used to create networks to analyze patterns of social support exchange with the lens of social network analysis. Additionally, network correlations were used to explore associations between social support networks. RESULTS: The findings revealed structural differences between support networks, as well as key network characteristics of supportive interactions facilitated by the intervention. Emotional and appraisal support networks are the larger, most centralized, and most active networks, suggesting that virtual communities can be good sources for these types of support. In addition, appraisal and instrumental support networks are more connected, suggesting that members of virtual communities are more likely to engage in larger group interactions where these types of support can be exchanged. Lastly, network correlations suggest that participants who exchange emotional support are likely to exchange appraisal or instrumental support, and participants who exchange appraisal support are likely to exchange instrumental support. CONCLUSIONS: Social interaction patterns from disease-specific virtual environments can be studied using a social network analysis approach to better understand the exchange of social support. Network data can provide valuable insights into the design of novel and effective eHealth interventions given the unique opportunity virtual environments have facilitating realistic environments that are effective and sustainable, where social interactions can be leveraged to achieve diverse health goals.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.