Search | Search by Center | Search by Source | Keywords in Title
Jacobs JC, Maciejewski ML, Wagner TH, Van Houtven CH, Lo J, Greene L, Zulman DM. Improving Prediction of Long-Term Care Utilization Through Patient-Reported Measures: Cross-Sectional Analysis of High-Need U.S. Veterans Affairs Patients. Medical care research and review : MCRR. 2022 Oct 1; 79(5):676-686.
This article examines the relative merit of augmenting an electronic health record (EHR)-derived predictive model of institutional long-term care (LTC) use with patient-reported measures not commonly found in EHRs. We used survey and administrative data from 3,478 high-risk Veterans aged = 65 in the U.S. Department of Veterans Affairs, comparing a model based on a Veterans Health Administration (VA) geriatrics dashboard, a model with additional EHR-derived variables, and a model that added survey-based measures (i.e., activities of daily living [ADL] limitations, social support, and finances). Model performance was assessed via Akaike information criteria, C-statistics, sensitivity, and specificity. Age, a dementia diagnosis, Nosos risk score, social support, and ADL limitations were consistent predictors of institutional LTC use. Survey-based variables significantly improved model performance. Although demographic and clinical characteristics found in many EHRs are predictive of institutional LTC, patient-reported function and partnership status improve identification of patients who may benefit from home- and community-based services.