Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Published models that predict hospital readmission: a critical appraisal.

Grossman Liu L, Rogers JR, Reeder R, Walsh CG, Kansagara D, Vawdrey DK, Salmasian H. Published models that predict hospital readmission: a critical appraisal. BMJ open. 2021 Aug 3; 11(8):e044964.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

INTRODUCTION: The number of readmission risk prediction models available has increased rapidly, and these models are used extensively for health decision-making. Unfortunately, readmission models can be subject to flaws in their development and validation, as well as limitations in their clinical usefulness. OBJECTIVE: To critically appraise readmission models in the published literature using Delphi-based recommendations for their development and validation. METHODS: We used the modified Delphi process to create (CAMPR), which lists expert recommendations focused on development and validation of readmission models. Guided by CAMPR, two researchers independently appraised published readmission models in two recent systematic reviews and concurrently extracted data to generate reference lists of eligibility criteria and risk factors. RESULTS: We found that published models (n = 81) followed 6.8 recommendations (45%) on average. Many models had weaknesses in their development, including failure to internally validate (12%), failure to account for readmission at other institutions (93%), failure to account for missing data (68%), failure to discuss data preprocessing (67%) and failure to state the model''s eligibility criteria (33%). CONCLUSIONS: The high prevalence of weaknesses in model development identified in the published literature is concerning, as these weaknesses are known to compromise predictive validity. CAMPR may support researchers, clinicians and administrators to identify and prevent future weaknesses in model development.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.