Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A Machine Learning Model to Successfully Predict Future Diagnosis of Chronic Myelogenous Leukemia With Retrospective Electronic Health Records Data.

Hauser RG, Esserman D, Beste LA, Ong SY, Colomb DG, Bhargava A, Wadia R, Rose MG. A Machine Learning Model to Successfully Predict Future Diagnosis of Chronic Myelogenous Leukemia With Retrospective Electronic Health Records Data. American Journal of Clinical Pathology. 2021 Nov 8; 156(6):1142-1148.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Chronic myelogenous leukemia (CML) is a clonal stem cell disorder accounting for 15% of adult leukemias. We aimed to determine if machine learning models could predict CML using blood cell counts prior to diagnosis. METHODS: We identified patients with a diagnostic test for CML (BCR-ABL1) and at least 6 consecutive prior years of differential blood cell counts between 1999 and 2020 in the largest integrated health care system in the United States. Blood cell counts from different time periods prior to CML diagnostic testing were used to train, validate, and test machine learning models. RESULTS: The sample included 1,623 patients with BCR-ABL1 positivity rate 6.2%. The predictive ability of machine learning models improved when trained with blood cell counts closer to time of diagnosis: 2 to 5 years area under the curve (AUC), 0.59 to 0.67, 0.5 to 1 years AUC, 0.75 to 0.80, at diagnosis AUC, 0.87 to 0.92. CONCLUSIONS: Blood cell counts collected up to 5 years prior to diagnostic workup of CML successfully predicted the BCR-ABL1 test result. These findings suggest a machine learning model trained with blood cell counts could lead to diagnosis of CML earlier in the disease course compared to usual medical care.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.