Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer.

You H, Shang W, Min X, Weinreb J, Li Q, Leapman M, Wang L, Tian J. Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer. Science advances. 2020 Feb 1; 6(6):eaax6040.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Nerve density is associated with prostate cancer (PCa) aggressiveness and prognosis. Thus far, no visualization methods have been developed to assess nerve density of PCa in vivo. We compounded propranolol-conjugated superparamagnetic iron oxide nerve peptide nanoparticles (PSN NPs), which achieved the nerve density visualization of PCa with high sensitivity and high specificity, and facilitated assessment of nerve density and aggressiveness of PCa using magnetic resonance imaging and magnetic particle imaging. Moreover, PSN NPs facilitated targeted therapy for PCa. PSN NPs increased the survival rate of mice with orthotopic PCa to 83.3% and decreased nerve densities and proliferation indexes by more than twofold compared with the control groups. The present study, thus, developed a technology to visualize the nerve density of PCa and facilitate targeted neural drug delivery to tumors to efficiently inhibit PCa progression. Our study provides a potential basis for clinical imaging and therapeutic interventions targeting nerves in PCa.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.