Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study.

Lo-Ciganic WH, Huang JL, Zhang HH, Weiss JC, Kwoh CK, Donohue JM, Gordon AJ, Cochran G, Malone DC, Kuza CC, Gellad WF. Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study. PLoS ONE. 2020 Jul 17; 15(7):e0235981.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


OBJECTIVE: To develop and validate a machine-learning algorithm to improve prediction of incident OUD diagnosis among Medicare beneficiaries with 1 opioid prescriptions. METHODS: This prognostic study included 361,527 fee-for-service Medicare beneficiaries, without cancer, filling 1 opioid prescriptions from 2011-2016. We randomly divided beneficiaries into training, testing, and validation samples. We measured 269 potential predictors including socio-demographics, health status, patterns of opioid use, and provider-level and regional-level factors in 3-month periods, starting from three months before initiating opioids until development of OUD, loss of follow-up or end of 2016. The primary outcome was a recorded OUD diagnosis or initiating methadone or buprenorphine for OUD as proxy of incident OUD. We applied elastic net, random forests, gradient boosting machine, and deep neural network to predict OUD in the subsequent three months. We assessed prediction performance using C-statistics and other metrics (e.g., number needed to evaluate to identify an individual with OUD [NNE]). Beneficiaries were stratified into subgroups by risk-score decile. RESULTS: The training (n = 120,474), testing (n = 120,556), and validation (n = 120,497) samples had similar characteristics (age 65 years = 81.1%; female = 61.3%; white = 83.5%; with disability eligibility = 25.5%; 1.5% had incident OUD). In the validation sample, the four approaches had similar prediction performances (C-statistic ranged from 0.874 to 0.882); elastic net required the fewest predictors (n = 48). Using the elastic net algorithm, individuals in the top decile of risk (15.8% [n = 19,047] of validation cohort) had a positive predictive value of 0.96%, negative predictive value of 99.7%, and NNE of 104. Nearly 70% of individuals with incident OUD were in the top two deciles (n = 37,078), having highest incident OUD (36 to 301 per 10,000 beneficiaries). Individuals in the bottom eight deciles (n = 83,419) had minimal incident OUD (3 to 28 per 10,000). CONCLUSIONS: Machine-learning algorithms improve risk prediction and risk stratification of incident OUD in Medicare beneficiaries.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.