Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies.

DeHoog RJ, Zhang J, Alore E, Lin JQ, Yu W, Woody S, Almendariz C, Lin M, Engelsman AF, Sidhu SB, Tibshirani R, Suliburk J, Eberlin LS. Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies. Proceedings of the National Academy of Sciences of the United States of America. 2019 Oct 22; 116(43):21401-21408.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Thyroid neoplasia is common and requires appropriate clinical workup with imaging and fine-needle aspiration (FNA) biopsy to evaluate for cancer. Yet, up to 20% of thyroid nodule FNA biopsies will be indeterminate in diagnosis based on cytological evaluation. Genomic approaches to characterize the malignant potential of nodules showed initial promise but have provided only modest improvement in diagnosis. Here, we describe a method using metabolic analysis by desorption electrospray ionization mass spectrometry (DESI-MS) imaging for direct analysis and diagnosis of follicular cell-derived neoplasia tissues and FNA biopsies. DESI-MS was used to analyze 178 tissue samples to determine the molecular signatures of normal, benign follicular adenoma (FTA), and malignant follicular carcinoma (FTC) and papillary carcinoma (PTC) thyroid tissues. Statistical classifiers, including benign thyroid versus PTC and benign thyroid versus FTC, were built and validated with 114,125 mass spectra, with accuracy assessed in correlation with clinical pathology. Clinical FNA smears were prospectively collected and analyzed using DESI-MS imaging, and the performance of the statistical classifiers was tested with 69 prospectively collected clinical FNA smears. High performance was achieved for both models when predicting on the FNA test set, which included 24 nodules with indeterminate preoperative cytology, with accuracies of 93% and 89%. Our results strongly suggest that DESI-MS imaging is a valuable technology for identification of malignant potential of thyroid nodules.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.