Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Influence of fracture obliquity and interlocking nail screw configuration on interfragmentary motion in distal metaphyseal tibia fractures.

Lowenberg DW, DeBaun MR, Sox-Harris A, Behn A. Influence of fracture obliquity and interlocking nail screw configuration on interfragmentary motion in distal metaphyseal tibia fractures. European journal of orthopaedic surgery & traumatology : orthopedie traumatologie. 2020 Feb 1; 30(2):343-350.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

The indications for the use of intramedullary (IM) nails have been extended to include extra-articular distal metaphyseal tibia fractures. We hypothesize that interfragmentary motion during physiologic compressive loading of distal tibia fractures is influenced by fracture obliquity and can be modulated by interlocking screw configuration. Sawbone specimens were osteotomized with frontal plane obliquities ranging from 0° to 60° and then fixed by IM nailing with six interlocking screw configurations. Interfragmentary motion was evaluated during loading in axial compression to 1000 N. Comparisons of interfragmentary motions were made (1) between configurations for the various fracture obliquities and (2) between fracture obliquities for the various screw configurations using a mixed-effects regression model. As the degree of fracture obliquity increased, significantly more interfragmentary displacement was shown in configurations with two distal interlocking screws and one proximal screw set in dynamic mode. Fracture obliquity beyond 30° causes demonstrated instability in configurations with less than two distal locking screws and one proximal locking screw. Optimizing the available screw configurations can minimize fracture site motion and shear in distal tibial fractures with larger fracture obliquities.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.