Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Impact of Slice Thickness on the Predictive Value of Lung Cancer Screening Computed Tomography in the Evaluation of Coronary Artery Calcification.

Christensen JL, Sharma E, Gorvitovskaia AY, Watts JP, Assali M, Neverson J, Wu WC, Choudhary G, Morrison AR. Impact of Slice Thickness on the Predictive Value of Lung Cancer Screening Computed Tomography in the Evaluation of Coronary Artery Calcification. Journal of the American Heart Association. 2019 Jan 8; 8(1):e010110.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Background Image reconstruction thickness may impact quantitative coronary artery calcium scoring (CACS) from lung cancer screening computed tomography (LCSCT), limiting its application in practice. Methods and Results We evaluated Agatston-based quantitative CACS from 1.25-mm LCSCT and cardiac computed tomography for agreement in 87 patients. We then evaluated Agatston-based quantitative CACS from 1.25-, 2.5-, and 5.0-mm slice thickness LCSCT for agreement in 258 patients. Secondary analysis included the impact of slice thickness on predictive value of 4-year outcomes. Median age of patients who underwent 1.25-mm LCSCT and cardiac computed tomography was 63 years (interquartile interval, 57, 68). CACS from 1.25-mm LCSCT and cardiac computed tomography demonstrated a strong Pearson correlation, R = 0.9770 (0.965, 0.985), with good agreement. The receiver operating characteristic curve areas under the curve for cardiac computed tomography and LCSCT were comparable at 0.8364 (0.6628, 1.01) and 0.8208 (0.6431, 0.9985), respectively ( P = 0.733). Median age of patients who underwent LCSCT with 3 slice thicknesses was 66 years (interquartile interval, 63, 73). Compared with CACS from 1.25-mm scans, CACS from 2.5- and 5.0-mm scans demonstrated strong Pearson correlations, R = 0.9949 (0.9935, 0.996) and R = 0.9478 (0.9338, 0.959), respectively, though bias was largely negative for 5.0-mm scans. Receiver operating characteristic curve areas under the curve for 1.25-, 2.5-, and 5.0-mm scans were comparable at 0.7040 (0.6307, 0.7772), 0.7063 (0.6327, 0.7799), and 0.7194 (0.6407, 0.7887), respectively ( P = 0.6487). When using individualized high-risk thresholds derived from respective receiver operating characteristic curves, all slice thicknesses demonstrated similar prognostic value. Conclusions Slice thickness is an important consideration when interpreting Agatston CACS from LCSCTs. Despite the absence of ECG gating, it appears reasonable to report CACS from either 1.25- or 2.5-mm slice thickness LCSCT to help stratify cardiovascular risk. Conversely, 5.0-mm scans largely underidentify calcium, limiting practical use within the established CACS values used to categorize cardiovascular risk.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.