Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Machine Learning Methods to Extract Documentation of Breast Cancer Symptoms From Electronic Health Records.

Forsyth AW, Barzilay R, Hughes KS, Lui D, Lorenz KA, Enzinger A, Tulsky JA, Lindvall C. Machine Learning Methods to Extract Documentation of Breast Cancer Symptoms From Electronic Health Records. Journal of pain and symptom management. 2018 Jun 1; 55(6):1492-1499.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

CONTEXT: Clinicians document cancer patients' symptoms in free-text format within electronic health record visit notes. Although symptoms are critically important to quality of life and often herald clinical status changes, computational methods to assess the trajectory of symptoms over time are woefully underdeveloped. OBJECTIVES: To create machine learning algorithms capable of extracting patient-reported symptoms from free-text electronic health record notes. METHODS: The data set included 103,564 sentences obtained from the electronic clinical notes of 2695 breast cancer patients receiving paclitaxel-containing chemotherapy at two academic cancer centers between May 1996 and May 2015. We manually annotated 10,000 sentences and trained a conditional random field model to predict words indicating an active symptom (positive label), absence of a symptom (negative label), or no symptom at all (neutral label). Sentences labeled by human coder were divided into training, validation, and test data sets. Final model performance was determined on 20% test data unused in model development or tuning. RESULTS: The final model achieved precision of 0.82, 0.86, and 0.99 and recall of 0.56, 0.69, and 1.00 for positive, negative, and neutral symptom labels, respectively. The most common positive symptoms were pain, fatigue, and nausea. Machine-based labeling of 103,564 sentences took two minutes. CONCLUSION: We demonstrate the potential of machine learning to gather, track, and analyze symptoms experienced by cancer patients during chemotherapy. Although our initial model requires further optimization to improve the performance, further model building may yield machine learning methods suitable to be deployed in routine clinical care, quality improvement, and research applications.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.