skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia.

Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Molecular Psychiatry. 2006 Mar 1; 11(3):241-51.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Post-mortem studies conducted over the past 15 years suggest that apoptosis could play a role in the pathophysiology of bipolar disorder (BD) and, to a lesser degree, schizophrenia (SZ). To test this hypothesis, we have performed a post hoc analysis of an extant gene expression profiling database obtained from the hippocampus using a novel methodology with improved sensitivity. Consistent with the working hypothesis, BDs showed a marked upregulation of 19 out of 44 apoptosis genes; however, contrary to the hypothesis, the SZ group showed a downregulation of genes associated with apoptotic injury and death. These changes in the regulation of apoptosis genes were validated using quantitative RT-PCR. Additionally, antioxidant genes showed a marked downregulation in BDs, suggesting that accumulation of free radicals might occur in the setting of a previously reported decrease of the electron transport chain in this disorder. Overall, the changes seen in BDs and SZs do not appear to be related to exposure to either neuroleptics or mood stabilizers. We conclude that fundamental differences in the genetic regulation of apoptosis and antioxidant genes may help discriminate between the pathophysiology of BD and SZ and potentially point to new treatment strategies that are specific for each disorder.

Questions about the HSR&D website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.