Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

dPQL: a lossless distributed algorithm for generalized linear mixed model with application to privacy-preserving hospital profiling.

Luo C, Islam MN, Sheils NE, Buresh J, Schuemie MJ, Doshi JA, Werner RM, Asch DA, Chen Y. dPQL: a lossless distributed algorithm for generalized linear mixed model with application to privacy-preserving hospital profiling. Journal of the American Medical Informatics Association : JAMIA. 2022 Jul 12; 29(8):1366-1371.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVE: To develop a lossless distributed algorithm for generalized linear mixed model (GLMM) with application to privacy-preserving hospital profiling. MATERIALS AND METHODS: The GLMM is often fitted to implement hospital profiling, using clinical or administrative claims data. Due to individual patient data (IPD) privacy regulations and the computational complexity of GLMM, a distributed algorithm for hospital profiling is needed. We develop a novel distributed penalized quasi-likelihood (dPQL) algorithm to fit GLMM when only aggregated data, rather than IPD, can be shared across hospitals. We also show that the standardized mortality rates, which are often reported as the results of hospital profiling, can also be calculated distributively without sharing IPD. We demonstrate the applicability of the proposed dPQL algorithm by ranking 929 hospitals for coronavirus disease 2019 (COVID-19) mortality or referral to hospice that have been previously studied. RESULTS: The proposed dPQL algorithm is mathematically proven to be lossless, that is, it obtains identical results as if IPD were pooled from all hospitals. In the example of hospital profiling regarding COVID-19 mortality, the dPQL algorithm reached convergence with only 5 iterations, and the estimation of fixed effects, random effects, and mortality rates were identical to that of the PQL from pooled data. CONCLUSION: The dPQL algorithm is lossless, privacy-preserving and fast-converging for fitting GLMM. It provides an extremely suitable and convenient distributed approach for hospital profiling.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.