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PREFACE 
The VA Evidence Synthesis Program (ESP) was established in 2007 to provide timely and 
accurate syntheses of targeted health care topics of importance to clinicians, managers, and 
policymakers as they work to improve the health and health care of Veterans. These reports help:  

• Develop clinical policies informed by evidence; 
• Implement effective services to improve patient outcomes and to support VA clinical 

practice guidelines and performance measures; and  
• Set the direction for future research to address gaps in clinical knowledge. 

The program comprises 4 ESP Centers across the US and a Coordinating Center located in 
Portland, Oregon. Center Directors are VA clinicians and recognized leaders in the field of 
evidence synthesis with close ties to the AHRQ Evidence-based Practice Center Program. The 
Coordinating Center was created to manage program operations, ensure methodological 
consistency and quality of products, interface with stakeholders, and address urgent evidence 
needs. To ensure responsiveness to the needs of decision-makers, the program is governed by a 
Steering Committee composed of health system leadership and researchers. The program solicits 
nominations for review topics several times a year via the program website.  

The present report was developed in response to a request from the Office of Research and 
Development working group for the Commander John Scott Hannon Veterans Mental Health 
Care Improvement Act, Public Law 116-171, section 305 (SHA305). The scope was further 
developed with input from Operational Partners (below), the ESP Coordinating Center, and the 
review team. The ESP consulted several technical and content experts in designing the research 
questions and review methodology. In seeking broad expertise and perspectives, divergent and 
conflicting opinions are common and perceived as healthy scientific discourse that results in a 
thoughtful, relevant systematic review. Ultimately, however, research questions, design, 
methodologic approaches, and/or conclusions of the review may not necessarily represent the 
views of individual technical and content experts.  
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EVIDENCE REPORT 
INTRODUCTION 
Improving diagnosis and treatment outcomes for Veterans with mental health conditions and 
traumatic brain injury (TBI) continues to be an important priority for the Department of Veterans 
Affairs (VA). Veterans enrolled in VA healthcare have a high prevalence of these conditions, 
estimated at 9% for posttraumatic stress disorder (PTSD), 14% for depression, 8% for substance 
use disorder (SUD), and 5% for anxiety disorders.1 Compared with previous service eras, 
Veterans who served in Iraq and/or Afghanistan have higher rates of PTSD, depression, and/or 
TBI, due in part to increased diagnosis and the changing nature of military service and combat-
related injuries.2 These conditions often have substantial impacts on long-term health and 
functioning for individuals, as well as broader effects on their families and communities.3-6 In 
terms of VA healthcare costs, treatment for mental health conditions accounted for $11 billion or 
13% of overall costs in fiscal year 2021 (FY 2021), with estimated annual increases in FY 2022–
2024.7  

In the past several decades, there have been substantial advancements in precision medicine, 
specifically the use of biomarkers and/or genetics in diagnosis, prognosis, and tailoring 
treatments for medical conditions. There are currently several ongoing large-scale population-
based studies to advance precision medicine, including the VA’s Million Veterans Program.8,9 In 
certain fields, such as oncology, the use of biomarkers and genetics to inform diagnosis and 
treatment decisions are now the standard of care.10,11 However, despite substantial interest in the 
use of precision medicine techniques in mental health, there has been much more limited 
progress.12,13 In the context of mental health, precision medicine has involved assessment of 
brain structure and functioning, as well as genetics and serum biomarkers. There are multiple 
challenges that impact advances in precision medicine for mental health conditions. These 
include complex and heterogeneous clinical phenotypes, high cost and technical difficulty of 
obtaining neuroimaging and neurophysiologic data, and differing assessments of symptoms and 
treatment response.14-17 These challenges have contributed to substantial concerns about the 
reproducibility and validity of findings that rest largely on cross-sectional studies of small 
samples that insufficiently represent the demographic and clinical variability of affected 
populations.15 Nevertheless, recent efforts to more systematically collect and examine large 
neuroimaging datasets, including across the lifespan, have yielded more promising results.15,18 
Thus, future work in this area may yet produce insights that improve diagnosis and treatment 
outcomes in mental health.  

This evidence review was requested by the VA Working Group to implement the Commander 
John Scott Hannon Veterans Mental Health Care Improvement Act, (P.L. 116-171), Section 305: 
“Precision Medicine for Veterans Initiative” (SHA305). SHA305 tasks the VA with developing 
and implementing a precision medicine initiative focused on brain and mental health 
biomarkers.19 SHA305 specifies that this initiative “shall include brain structure and function 
measurements, such as functional magnetic resonance imaging and electroencephalogram” and 
further coordinate with current data collection by the Million Veterans Program. To support the 
VA SHA305 Working Group, we conducted an evidence map to better understand characteristics 
of existing evidence on relationships between brain structure and functioning, and mental health 
conditions and TBI. An evidence map is well suited to address a broad scope covering multiple 



Neuroimaging for Mental Health Evidence Synthesis Program 

13 
 

conditions and numerous neuroimaging and neurophysiological techniques, particularly when 
some of the evidence base may consist of more exploratory studies. An evidence map is also 
appropriate for meeting the overall goals of informing research policy and potential clinical 
demonstrations.20,21  

Therefore, in this report, we provide descriptive information about the number and types of 
studies that address a wide range of neuroimaging and neurophysiologic assessments for diverse 
mental health conditions and TBI. We also highlight weaknesses and gaps in the evidence, as 
determined by the volume and characteristics of studies. 
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METHODS 
TOPIC DEVELOPMENT 
We worked with our Operational Partners, the VA SHA305 Working Group, to refine the scope 
and develop the key questions for this evidence report. To meet the broad scope and main 
objectives of this workgroup, we conducted an evidence map to identify and describe the current 
state of research (including evidence gaps) involving the use of a wide variety of neuroimaging 
and neurophysiologic tests in the context of clinical diagnosis and/or prognosis for a number of 
important mental health conditions and TBI. An evidence map is also well suited for determining 
the current state of research areas that have mainly more exploratory or early phase studies. The 
protocol was developed a priori and registered with Open Science Framework (registration DOI: 
https://doi.org/10.17605/OSF.IO/5PHG2).  

KEY QUESTION (KQ) 
KQ: What are the quantity, distribution, and characteristics of evidence assessing the accuracy 
and utility of neuroimaging and neurophysiologic biomarkers in the diagnosis and clinical 
management of the following conditions: 

a) Depression 

b) Anxiety 

c) Posttraumatic stress disorder (PTSD) 

d) Substance use disorder (SUD) 

e) Bipolar disorder 

f) Traumatic brain injury 

SEARCH STRATEGY 
We searched for peer-reviewed English language articles from January 2010 to April 2022 in the 
MEDLINE and Embase databases. We used Medical Subject Headings (MeSH) and title/abstract 
terms for the neuroimaging and neurophysiological tests, and conditions of interest 
(Appendix A). We also searched websites for the VA ESP and AHRQ EPC programs for 
relevant reviews.  

STUDY SELECTION 
After duplicates were removed, citations were uploaded into DistillerSR (Evidence Partners, 
Ottawa, Canada). Abstracts were screened with the assistance of DistillerSR’s Artificial 
Intelligence System (DAISY) in 2 separate phases. In the first phase, 2 reviewers were required 
to exclude an abstract at screening (while only 1 reviewer was needed to include for full-text 
review) until the DAISY-predicted score for likelihood of inclusion was less than 0.4 and the 
inclusion rate had fallen to less than 5%. Approximately 12,000 abstracts were reviewed in phase 
1. In the second phase, for abstracts with DAISY-predicted scores for likelihood of inclusion of 
0.2–0.3 (k ≈ 7,000 abstracts), 1 reviewer decided on inclusion for full-text review. The remaining 
abstracts with DAISY-predicted likelihood scores less than 0.2 were not further reviewed for 
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eligibility (k = 25,912). Based on an inclusion rate of 0.00066 for the last batch of abstracts 
evaluated during phase 2 (k = 1,526), we conservatively estimate that an additional 17 abstracts 
may have been potentially included for full-text review, if we had continued with 1-reviewer 
evaluation of those abstracts with likelihood scores of less than 0.2. 

For full-text review, we undertook 2 initial pilot rounds where all reviewers separately 
determined eligibility for 10–15 articles in each round. We discussed articles to reach consensus 
on eligibility, with further clarification on operationalization of inclusion and exclusion criteria. 
Eligibility of remaining articles was determined by 1 reviewer, with ~50% of these also 
undergoing evaluation by a second reviewer.  

Detailed eligibility criteria are provided in Appendix B. 

Briefly, eligible populations included adults (≥18 years of age) with at least 1 of the conditions 
of interest, as noted in KQ above. Eligible articles also evaluated at least 1 neuroimaging or 
neurophysiological test of interest (eg, magnetic resonance imaging [MRI], including functional 
MRI [fMRI], diffusion tensor imaging [DTI], positron emission tomography [PET], single 
photon emission computed tomography [SPECT], and evoked potentials and 
electroencephalogram [EEG]) for diagnostic accuracy, clinical prognosis, and/or treatment 
response. Exclusion criteria included pediatric populations, evaluation of mental health 
symptoms or cognitive functioning only in the context of neurodegenerative conditions (eg, 
Alzheimer’s dementia or Parkinson’s disease) or intracranial injury (eg, due to ischemic or 
hemorrhagic stroke). We also excluded studies attempting to evaluate prognostic patterns using 
exclusively cross-sectional data (eg, comparing current differences in neuroimaging or 
neurophysiological patterns between patients with depression in remission vs those with 
treatment-resistant depression). There are very substantial validity concerns with use of cross-
sectional data to evaluate predictors of treatment response or general prognosis, which has been 
noted previously.22 

DATA ABSTRACTION 
We abstracted the following data from all eligible studies: population characteristics (eg, 
condition and method of diagnosis, sample size, demographic data (eg, mean or median age, 
proportion of women, focus on Veterans or combat exposure), neuroimaging test and/or EEG 
being evaluated (and genetic data if used), outcomes addressed (clinical diagnosis and/or 
prognosis), and study design (eg, cross-sectional or cohort, analytic methods used to assess 
diagnostic accuracy). To verify accuracy of abstracted results, data from ~50% of articles were 
over-read by a second reviewer.  

QUALITY ASSESSMENT AND SUMMARY OF RESULTS 
We did not conduct formal quality assessment of eligible studies included in this report. We also 
did not undertake a formal synthesis of study results. Our results summaries are organized by the 
conditions of interest and focus on describing the characteristics of study populations, outcomes 
(clinical diagnosis, prognosis, and/or treatment response), and study designs (including analytic 
methods) of eligible studies.  
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PEER REVIEW 
A draft version of this report was reviewed by technical experts as well as clinical leadership. 
Their comments and our responses are presented in Appendix C. 
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RESULTS 
OVERVIEW 
From 50,989 unique search results, we identified 343 eligible articles (Figure 1), consisting of 
313 primary studies (Appendix D) and 30 systematic reviews (Appendix E). At abstract 
screening, 47,586 results were excluded, with 54% of these based on low scores from a machine-
learning algorithm (see Methods and Figure 1). A list of references excluded during full-text 
review (k = 3,060) and reasons for exclusion is available upon request. 

Figure 1. Identification and Selection of Eligible Studies 

 

Notes. * Machine-learning algorithm DAISY on the DistillerSR platform (Evidence Partners). 

Records identified through database searching  
(n=83,228) 
Medline (n=26,460)  
Embase (n=56,768) 
 

Records identified through 
reference lists or expert 
recommendation  
(n=0) 

Records remaining after 
removal of duplicates 
(n=50,989) 
 

Records remaining after title 
and abstract review 
(n=3,403) 

Records remaining after full-
text review and included in 
synthesis 
(n=343) 
 
Primary studies n=313 
Systematic reviews n=30 

Excluded (n=47,586) 
Excluded with probability score* 
<0.2 (n=25,906) 

Excluded (n=3,060) 
-Ineligible population (n=183) 
-Ineligible intervention (n=69) 
-Ineligible outcome (n=2,730) 
-Ineligible study design (n=76) 
-Ineligible language (n=2) 
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Most of the eligible primary studies and systematic reviews addressed depression (k = 236, 
69%), while fewer studies and reviews evaluated other conditions. Only 2 primary studies 
evaluated genetic data in addition to neuroimaging or neurophysiologic data. Figure 2 
summarizes the distribution of primary studies using various neuroimaging or neurophysiologic 
data for evaluation of diagnosis or prognosis of each condition of interest. Three-quarters of 
primary studies used MRI-based imaging techniques (k = 236, 75%), while a fifth used EEG 
data (k = 68, 22%). For multiple conditions, there were none or few studies (k ≤ 5) examining 
either diagnosis or prognosis. 

Figure 2. Number of Primary Studies Using Neuroimaging or Neurophysiologic 
Data to Evaluate Diagnosis (A) or Prognosis (B) for Various Mental Health 
Conditions 

Notes. Others category includes positron emission tomography (PET), single-photon emission computerized 
tomography (SPECT), and magnetoencephalography (MEG).  
Abbreviations. ASL=arterial spin labeling; DTI=diffusion tensor imaging; EEG=electroencephalogram; MRI=magnetic 
resonance imaging (structural or functional); OCD=obsessive compulsive disorder; PTSD=posttraumatic stress 
disorder; SUD=substance use disorder; TBI=traumatic brain injury. 
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B. Prognosis
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EEG
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Table 1 provides more information about study populations and methods for primary studies 
across the different conditions. Most primary studies had small sample sizes, with only 9 having 
more than 500 participants (range 555–4541). Two-thirds of primary studies examined diagnosis 
(k = 200), 110 evaluated prognosis, and 3 addressed both diagnosis and prognosis. Most primary 
studies included young and middle-aged participants; only 5 studies had participants with mean 
ages of 65 or older, and all of these addressed depression (with 1 also including participants with 
bipolar disorder).23-27 Following Table 1, we present results for primary studies by condition of 
interest and then describe results for eligible systematic reviews. 

Table 1. Summary of Characteristics of Included Primary Studies 

 Depression 
(k = 218) 

Bipolar 
Disorders 
(k = 47) 

PTSD 
(k = 30) 

TBI  
(k = 12) 

SUD 
(k = 20) 

OCD  
(k = 19) 

Anxiety 
Disordersa 
(k = 10) 

Neuroimaging/Neurophysiologic technique      
MRI-based techniques:        

Structural MRI (sMRI) 73 24 8 5 5 5 3 
Functional MRI (fMRI) 80 19 13 2 8 12 7 
DTI or ASL 12 5 1 2 2 1 ― 

EEG 54 1 5 2 8 1 ― 
Othersb 15 3 5 1 ― ― ― 

Outcomes        
Diagnosis 130 41 24 10 9 17 4 
Prognosis:        

Treatment responsec 89 6 6  11 2 6 
Change in symptoms 
or  functioning 2 ― ― 2 ― ― ― 

Study design & methods        
Cross-sectional 117 38 22 10 9 15 3 
Cohort/longitudinal 
observational 88 9 6 2 10 4 7 

Randomized controlled 
trial 13 ― 2 ― 1 ― ― 

Used machine learning 123 28 10 1 11 9 4 
Models validated 145 30 12 3 8 7 4 

Country        
US/Canada 55 12 18 10 10 1 6 
China 84 9 7 ― 3 14 2 
UK/Europe 33 8 2 ― 2 1 1 
Othersd 44 17 3 2 5 3 1 
NR 2 1 ― ― ― ― ― 

Sample sizes (total N)e        
30–99 130 23 17 7 13 9 9 
100–200 63 19 8 2 6 9 1 
201–500 18 5 4 1 ― 1 ― 
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Depression 
(k = 218) 

Bipolar 
Disorders 
(k = 47) 

PTSD 
(k = 30) 

TBI 
(k = 12) 

SUD 
(k = 20) 

OCD 
(k = 19) 

Anxiety 
Disordersa 
(k = 10) 

501–1000 2 ― ― ― ― ― ― 
>1,000 5 ― 1 ― 1 ― ― 

Age (mean or median, years) 
18–25 9 7 2 ― ― 4 4 
26–44 160 34 22 10 13 14 5 
45–64 31 4 3 1 5 ― ― 
>65 5 1 ― ― ― ― ― 
NR 13 1 3 1 2 1 1 

Type of Veterans included 
US Veterans or active 
military ― ― 10 7 3 ― ― 

Non-US Veterans or 
active military ― ― 3 ― ― ― ― 

Notes. a Includes general anxiety disorder, panic disorder, and social anxiety disorder. 
b Includes positron emission tomography (PET), single-photon emission computerized tomography (SPECT), and 
magnetoencephalography (MEG). 
c For SUD, this was abstinence vs relapse after or during treatment. 
d Includes other countries not included in categories above, as well as studies done in multiple countries. 
e Also includes healthy controls if among participants. 
Abbreviations. ASL=arterial spin labeling; DTI=diffusion tensor imaging; EEG=electroencephalogram; MRI=magnetic 
resonance imaging; NR=not reported; OCD=obsessive compulsive disorder; PTSD=posttraumatic stress disorder; 
SUD=substance use disorder; TBI=traumatic brain injury; UK=United Kingdom; US=United States. 

DEPRESSION 
Overview 

The majority of eligible primary studies evaluated depression (k = 218, 70%), and the vast 
majority of these used structural and/or functional MRI (k = 153) (Table 1). Fewer studies 
employed other MRI-based techniques like DTI (k = 10) and arterial spin labeling (ASL, k = 2). 
A quarter of studies addressing depression used EEG or evoked potentials (k = 54); others used 
magnetoencephalography (MEG, k = 8), PET (k = 4), or SPECT (k = 3). Most studies focused 
on whether neuroimaging tests contributed to diagnosis (k = 127). Less than half (k = 88) 
evaluated prognosis, and very few (k = 3) addressed both diagnosis and prognosis. About half of 
studies (k = 123) used machine learning methods to develop diagnostic or predictive models, 
including the selection of imaging features and patterns. Two-thirds of studies undertook model 
validation (k = 144). Most studies were very small with total sample sizes less than 100 (k = 
130); only 2 studies had 500–1000 participants, and 5 studies had 1000 or more participants. 
Median sample size for studies using various neuroimaging or neurophysiologic data is shown in 
Figure 3. Studies were conducted in different regions of the world, with most common locations 
being the US or Canada (k = 55) and China (k = 84). 
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Figure 3. Median Sample Size of Included Studies Evaluating Diagnosis (A) or 
Prognosis (B) for Depression 

 
Notes. Others category includes positron emission tomography (PET), single-photon emission computerized 
tomography (SPECT), and magnetoencephalography (MEG). Number of included studies is indicated for each type of 
imaging or neurophysiologic data. 
Abbreviations. ASL=arterial spin labeling; DTI=diffusion tensor imaging; EEG=electroencephalogram; MRI=magnetic 
resonance imaging (structural or functional). 

MRI-based Imaging Techniques (Structural and Functional MRI, DTI, and ASL) 

Diagnosis  

Of 104 studies using MRI-based techniques to address diagnosis of depression, the largest 
proportion used structural MRI (k = 49), fMRI (k = 48; 39 using resting fMRI and 10 task-
specific), or both (k = 1) (Table 2). A few used other MRI-based techniques like DTI (k = 6)28-32 
and ASL (k = 2).33,34 Most were cross-sectional (k = 91), while those remaining were 
cohort/longitudinal (k = 13). Three-quarters used machine learning methods to develop models 
(k = 75). Nearly all studies assessed diagnostic model accuracy (k = 100) and 

A. Diagnosis

B. Prognosis

(k=50) (k=24)(k=8)(k=49) (k=10)

(k=24) (k=30)(k=5)(k=32) (k=5)
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sensitivity/specificity (k = 93). Three-quarters of the studies also undertook model validation (k 
= 77).  

Total sample sizes ranged 30–4541; half of the studies had N < 100 (k = 57) and only 4 had N > 
1000. Most included healthy controls (k = 99), while a quarter had participants with bipolar 
disorder (k = 26). A third focused particularly on participants not on medications (k = 34), with 
this including those who had not been on any medications and others who were not on 
medications at the time of the study. A fifth of studies included participants with their first 
episode of depression (k = 19). Nearly every study had substantial proportions of women (k = 92 
with women >40%). Most participants were young and middle-aged; only 5 studies reported 
race. The most common locations were China (k = 57) and the US (k = 17). 

The most frequently used standard for determining diagnostic accuracy was standardized 
clinician assessments (eg, k = 89 studies used Hamilton Depression Rating Scale [HAM-D]). 
Clinician interviews were also commonly used, including the Structured Clinical Interview for 
DSM (SCID; k = 74) and Mini-International Neuropsychiatric Interview (MINI; k = 18). Fewer 
studies used patient-reported measures such as the Beck Depression Inventory (BDI; k = 21).  

Table 2. Summary of Characteristics of Included Studies Evaluating MRI-based 
Imaging Techniques for Diagnosis of Depression 

 sMRI  
(k = 50) 

fMRI 
(k = 49) 

Other Techniquesa 
(k = 8) 

Depression subgroups    
Medication free 14 19 2 
First episode 7 12 ― 
Treatment resistant 1 2 ― 

Other groups included    
Healthy controls 46 47 6 
Bipolar disorder patients 12 12 3 

Country    
US 13 6 4 
China 26 32 4 
UK/Europe 9 8 ― 
Otherb 5 3 ― 
NR 1 ― ― 

Sample sizes (total N)    
30–99 23 27 7 
100–249 21 16 1 
250–499 4 3 ― 
500–999 ― 1 ― 
>1,000 2 2 ― 
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 sMRI  
(k = 50) 

fMRI 
(k = 49) 

Other Techniquesa 
(k = 8) 

Age (mean or median, years)    
18–25 ― 7 1 
26–44 45 38 4 
45–64 2 3 ― 
≥65 2 1 1 
NR 1 ― 2 

% Women    
0–15 1 ― ― 
16–40 3 2 ― 
41–70 40 41 7 
>70 5 6 1 
NR 1 ― ― 

Race reported? 4 ― 1 
Diagnostic accuracy standard   

Clinician interviews 37 34 5 
Clinician assessments 40 35 5 
Patient-reported outcomes 8 9 1 

Study design    
Cross-sectional 43 43 7 
Cohort/longitudinal 6 6 1 

Analytic methods   
Sensitivity/specificity  44 45 7 
Machine learning 32 40 5 
Models validated 47 48 7 

Notes. a Includes arterial spin labeling (ASL) and diffusion tensor imaging (DTI). 
b Includes other countries not included in categories above, as well as studies done in multiple countries. 
Abbreviations. MRI=magnetic resonance imaging (structural or functional); NR=not reported.  

Prognosis & Treatment Response 

Among 59 studies evaluating prognosis, most also used structural MRI (k = 22), fMRI (k = 31; 
15 resting fMRI, 14 task-specific, and 2 both resting and task), or both (k = 2); 5 studies used 
DTI. Nearly all studies examined treatment response (k = 55), most commonly to antidepressant 
therapy (k = 36). Fewer evaluated response to psychotherapy (k = 6), electroconvulsive therapy 
(ECT, k = 9), repetitive transcranial magnetic stimulation (rTMS, k = 5), transcranial direct 
current stimulation (tDCS, k = 1), theta burst stimulation (TBS, k = 1), or inpatient multi-modal 
treatment (k = 1) (Table 3). Additionally, 2 studies evaluated general trajectories over 2 years for 
middle-aged35 and older adults26 with depression. Twenty-two studies applied machine learning 
approaches and 34 validated predictive models. 

Most studies were cohorts/longitudinal observational (k = 49), and 10 were reports of RCTs. 
Four of these articles36-39 used data from a single RCT, the international Study to Predict 
Optimized Treatment in Depression (iSPOT-D).40 A single study included N > 1000,41 while half 
had N < 100 participants (k = 31). Some studies on treatment response only included medication-
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free participants, indicating those who had not received treatment for the current depressive 
episode or had undergone a washout period (k = 24). Others focused on treatment-resistant 
depression (k = 11). Only 2 studies distinguished participants in their first episode of 
depression.42,43 Additionally, a third included healthy controls (k = 21), while a few had 
participants with bipolar disorder (k = 4). Studies had relatively young participants, and women 
were well represented. Demographic information relating to race/ethnicity was reported in 9 
studies. The most common locations were the US or Canada (k = 21) and China (k = 12). 

Table 3. Summary of Characteristics of Included Studies Evaluating MRI-based 
Techniques for Treatment Response in Depression 

 
Response to Treatments 

Antidepressants 
(k = 36) 

Psychotherapies 
(k = 6) 

ECT 
(k = 9) 

rTMS 
(k = 6) 

Othera 
(k = 3) 

Imaging technique      
sMRI 13 ― 7 2 1 
fMRI 20 6 3 5 1 
DTI 4 ― ― ― 1 

Depression subgroups      
Medication free 20 3 ― ― 2 
Treatment resistant 1 ― 6 4 ― 

Other groups included      
Healthy controls 16 3 1 3 ― 
Bipolar disorder  ― ― 4 ― ― 

Country      
US/Canada 9 5 5 2 1 
China 11 ― ― 1 ― 
UK/Europe 5 ― ― ― 1 
Otherb 11 1 1 2 1 

Sample sizes (total N)      
30–99 18 3 7 4 1 
100–249 15 3 2 1 2 
250–499 3 ― ― ― ― 
500–999 ― ― ― ― ― 
>1,000 ― ― ― 1 ― 

Age (mean or median, years)     
26–44 27 5 4 5 2 
45–64 5 ― 5 1 1 
≥65 2 ― ― ― ― 
NR 2 1 ― ― ― 
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Response to Treatments 

Antidepressants 
(k = 36) 

Psychotherapies 
(k = 6) 

ECT 
(k = 9) 

rTMS 
(k = 6) 

Othera 
(k = 3) 

% Women      
0–15 ― 0 ― ― ― 
16–40 3 1 ― 1 ― 
41–70 27 2 6 5 3 
>70 4 0 ― ― ― 
NR 2 3 3 1 ― 

Race reported? 4 2 2 ― ― 
Study design      

Cohort/longitudinal 29 5 9 6 2 
RCT 7 1 ― ― ― 

Analytic methods      
ROC (or sensitivity/ 
specificity) 17 3 2 4 1 

Machine learning 12 1 7 3 ― 
Models validated 22 1 8 4 1 

Notes. a Includes 1 study on transcranial direct current stimulation (tDCS), 1 study on theta burst stimulation (TBS) vs 
rTMS, and 1 using multi-modal inpatient treatment. 
b Includes other countries not included in categories above, as well as studies done in multiple countries. 
Abbreviations. DTI=diffusion tensor imaging; ECT=electroconvulsive therapy; MRI=magnetic resonance imaging 
(structural or functional); NR=not reported; ROC=receiver operating curve; rTMS=repetitive transcranial magnetic 
stimulation. 

EEG and Evoked Potentials 

Diagnosis  

Of 54 studies evaluating EEG or evoked potentials for depression, 24 examined diagnosis (k = 
24) (Table 4). Most studies addressing diagnosis included healthy controls (k = 23), and most 
were very small with total sample sizes less than 100 (k = 21). Only 2 studies focused on 
participants in their first episode of depression,44,45 and only 3 studies had more than 100 
participants (range 157–400).46-48 Study participants were young and middle-aged adults (mean 
age range 20–55), and more than half of studies had more than 40% women (k = 17). Studies 
were conducted in different regions of the world, with the most common location being China (k 
= 7); 1 study was multi-site, occurring in Japan, the US, and Taiwan.46 

All diagnostic studies were cross-sectional in design and most used machine learning methods (k 
= 17). Standardized clinician assessments (HAM-D and Montgomery-Asberg Depression Rating 
Scale [MADRS]) were the most frequently used diagnostic standard (k = 14). Most studies 
undertook model validation (k = 20).  

Prognosis & Treatment Response 

Thirty studies examined EEG or evoked potentials for prognosis in depression. These all 
examined response to specific treatments; most addressed outcomes after antidepressant therapy 
(k = 19), while fewer evaluated rTMS (k = 9) and 1 study each examined acupuncture49 or  
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ketamine.50 A third of prognostic studies included participants who were not on medications (k = 
11), and 8 focused on treatment-resistant participants (variably defined as not responding to 
sufficient course of antidepressants). No study included only participants with their first episode 
of depression. Six studies included participants who were healthy controls. The majority of 
studies were small with less than 100 participants (k = 22), while 8 studies included somewhat 
more participants (range 103–220). Studies most commonly were conducted in the US or Canada 
(k = 13). 

Prognostic studies were most often longitudinal observational (k = 25) but a few used data from 
RCTs (k = 4).51-54 A third of prognostic studies used machine learning (k = 9). Studies most 
commonly used standardized clinician assessments (HAM-D and MADRS) to define treatment 
response (k = 25). Just under half of studies undertook model validation (k = 12). 

Table 4. Characteristics of Included Studies Evaluating Electroencephalogram 
and Evoked Potentials for Depression 

 
Diagnosis 
(Total = 24) 

Response to Treatments 

 
Antidepressants 
(Total = 19) 

rTMS 
(Total = 9) 

Othera  
(Total = 2) 

Depression subgroups     
Medication free 3 8 ― ― 
Treatment resistant ― 3 1 1 

Other groups included     
Healthy controls 23 3 2 1 
Bipolar disorder 2 ― ― ― 

Country     
US/Canada 3 10 3 ― 
China 7 4 ― 1 
UK/Europe 5 4 1 ― 
Otherb 9 5 3 1 
NR ― ― 1 ― 

Sample sizes (total N)     
30–99 21 13 7 2 
100–249 1 6 2 ― 
250–500 2 ― ― ― 

Age (mean or median, years)     
18–35 5 3 ― ― 
36–50 16 14 6 2 
51–64 1 ― ― ― 
NR 2 2 3 ― 
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Diagnosis 
(Total = 24) 

Response to Treatments 

 
Antidepressants 
(Total = 19) 

rTMS 
(Total = 9) 

Othera  
(Total = 2) 

% Women     
16–40 1 1 ― ― 
41–70 14 15 6 1 
>70 3 2 ― 1 
NR 6 1 3 ― 

Race reported? ― 2 ― ― 
Diagnosis/prognosis standards     

Clinician interviews 9 ― ― ― 
Clinician assessments 14 17 7 2 
Patient-reported outcomes 7 2 3 ― 

Study design     
Cross-sectional 24 ― ― ― 
Cohort/longitudinal observational ― 16 8 2 
Randomized controlled trial ― 3 1 ― 

Analytic methods     
Sensitivity/specificity  23 ― 2 ― 
Machine learning 17 5 3 2 
Models validated 20 6 4 2 

Notes. a Includes 1 study on outcomes after acupuncture and 1 on ketamine. 
b Includes other countries not included in categories above, as well as studies done in multiple countries. 
Abbreviations. NR=not reported; rTMS=repetitive transcranial magnetic stimulation. 

Other Neuroimaging Techniques (MEG, PET, and SPECT) 

Eight eligible studies evaluated MEG for depression; 7 of these examined diagnosis and 1 
addressed treatment response to antidepressants.55 Five of these studies also used MRI-based 
imaging techniques. All diagnostic studies had healthy controls as comparators, and 1 also 
included individuals with bipolar disorder.56 All studies were conducted in China or Taiwan and 
were very small (total N = 41–108). Participants were young (mean age range 30–37) and women 
were well represented (37–61% across studies). Six diagnostic studies were cross-sectional, and 
1 was a longitudinal cohort.57 All used structured interviews as the gold standard, and 6 also used 
HAM-D as the standardized clinician assessment. The prognostic study on outcomes with 
antidepressants also used HAM-D to define response.55 Three studies used machine learning 
methods, and 6 validated models. 

We also identified 4 studies that evaluated PET for diagnosis (k = 2) or prognosis (k = 2) in 
depression. Three of these also used structural MRI to improve localization of PET data.53,58,59 
Both diagnostic studies were cross-sectional and were conducted in the US.58,59 Both prognostic 
studies evaluated response to antidepressants and occurred in Taiwan; 1 was an RCT53 and the 
other an observational cohort.60 All studies were similarly very small (total N = 36–107) and 
included mostly young adults (mean age range 32–43). None of the studies used machine 
learning methods and none conducted model validation. 
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Lastly, 3 eligible studies used SPECT for diagnosis (k = 1) or prognosis (k = 2). The diagnostic 
study was very large (N = 4,541), conducted in the US, used a structured clinical interview 
(MINI) as the gold standard, and undertook model validation.61 Both prognostic studies were 
conducted by one research group in France, evaluated response to rTMS, and also included 
participants with bipolar disorder.62,63 They had small samples (total N = 33–58), and used 
patient-reported outcome (BDI) to determine response. None of the SPECT studies used a 
machine learning approach. 

BIPOLAR DISORDERS 
Forty-seven eligible studies evaluated diagnosis (k = 41) or prognosis (k = 6) for bipolar 
disorders. More than half of studies also included participants with depression (k = 27 for 
diagnostic studies, and all prognostic studies). Nearly all diagnostic studies used MRI-based 
techniques (k = 24 for structural MRI, k = 19 fMRI [13 resting and 6 task-specific], k = 3 DTI, 
and k = 2 ASL), with 1 of these also using MEG.56 One study examined EEG for diagnosis.64 
Half included healthy controls (k = 23), and half were very small with total N < 100 (k = 23). 
Only 3 studies had N > 250 (range 251–441).65-67 Most participants were young adults, with only 
2 studies having mean ages of 45 or older.27,62,68 Most studies had at least 40% women (k = 44). 
The most common locations were China (k = 15) and the US (k = 12). 

Most diagnostic studies were cross-sectional (k = 31), while 3 were longitudinal (to confirm 
symptoms and diagnosis over 1–2 years).69-71 About half of diagnostic studies used machine 
learning methods (k = 25), and undertook model validation (k = 24). Less than half used both 
structured clinical interviews (MINI and/or SCID) and standardized clinician assessments 
(Young Mania Rating Scale [YMRS]) as the diagnostic standard for bipolar disorder (k = 16). 
Another 18 studies used only structured interviews, and 3 used only YMRS. One study did not 
specifically identify structured interviews or a standardized assessment, indicating only that 
diagnosis was completed by a psychiatrist.27  

All prognostic studies were included above in results for depression. Briefly, 4 used MRI-based 
techniques to evaluate outcomes after ECT72-75 and 2 used SPECT to examine response to 
rTMS.62,63 These were all small studies (total N = 33–122) of middle-aged adults (mean age 
range 39–56). Three studies used machine learning and validated models.73-75 

POSTTRAUMATIC STRESS DISORDER  
Overview  

Thirty eligible articles evaluated PTSD, with most focusing on diagnosis (k = 24) (Table 5). The 
majority used MRI-based techniques, including fMRI (k = 11), structural MRI (k = 7), both 
structural MRI and fMRI (k = 1), or fMRI and DTI (k = 1). Remaining studies used PET (k = 1), 
SPECT (k = 2), MEG (k = 1), or EEG (k = 5). The majority were cross-sectional (k = 22), with 
fewer being longitudinal cohorts (k = 6) or RCT (k = 2). Most were small, with the majority 
having N < 100 (k = 17). The remaining sample sizes were 116–432 (k = 12) and 2,137 for 1 
large database study.76 Studies were conducted mostly in the US or Canada (k = 18) and China (k 
= 7); a few were conducted in the Netherlands (k = 2), South Korea (k = 2), and Iran (k = 1). 
One third of the studies included US Veterans or active military (k = 10), with half of these 
including combat-exposed Veterans or active military (k = 5).  
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Table 5. Summary of Characteristics of Included Studies Addressing Diagnosis of 
Posttraumatic Stress Disorder 

 
sMRI  
(k = 6) 

fMRIa 

(k = 9) 
DTI 
(k = 1) 

EEG 
(Total=5) 

Othersb 
(Total=6) 

Population characteristics      
Veteran or active military 2 3 1 2 4 
Combat exposed 2 2 1 2 2 
Included TBI  1 2 1 1 2 
Trauma-exposed controls 5 1 ― ― 2 

Country      
US/Canada 2 4 1 3 6 
China 3 5 ― ― ― 
Otherc 1 ― ― 2 ― 

Sample sizes (total N)      
30–99 4 4 1 4 2 
100–249 2 4 ― 1 3 
250–499 ― ― ― ― 3 
500–999 ― ― ― ― ― 
>1,000 ― 1 ― ― ― 

Age (mean or median, years)      
26–44 4 7 ― 4 5 
45–64 2 ― ― 1 ― 
NR ― 1 1 ― ― 

% Women      
0–15 2 2 ― 3 ― 
16–40 1 1 ― ― 3 
41–70 3 3 ― 1 2 
>70 ― 2 ― 1 ― 
NR ― 1 1 ― ― 

Race reported? 1 1 ― ― 3 
Diagnostic accuracy standard      

Clinician interviews 4 3 ― 3 4 
Clinician assessments 5 7 1 2 3 
Patient-reported outcomes 2 4 1 4 ― 

Study design      
Cross-sectional 5 8 1 5 6 
Cohort/longitudinal 1 1 ― ― ― 

Analytic methods      
Sensitivity/specificity  3 5 ― 5 3 
Machine learning 3 4 ― 2 2 
Models validated 2 4 ― 1 2 

Notes. a All resting fMRI studies. 
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b Includes positron emission tomography (PET), single-photon emission computerized tomography (SPECT), and 
magnetoencephalography (MEG). 
c Includes other countries not included in categories above. 
Abbreviations. DTI=diffusion tensor imaging; EEG=electroencephalogram; MRI=magnetic resonance imaging 
(structural or functional); NR=not reported; TBI=traumatic brain injury; US=United States. 

MRI-based Techniques (Structural and Functional MRI, and DTI) 

Diagnosis  

The majority of studies evaluating diagnosis for PTSD used MRI-based techniques (k = 14, 
Table 5). One of these used both MRI and MEG.77 Most of these were cross-sectional (k = 12), 
with only 2 being cohort studies.78,79 The majority of these studies were small in size, with half 
having N < 100 (k = 7), half with N = 116-217 (k = 6), and 1 large database study with N = 2,137 
(this also included multiple mental health disorders).76 Participants were mostly young adults 
(mean age range 32–45), and women were variably represented (eg, 6 studies with no women). 
Half were conducted in China (k = 7), with the remaining from the US or Canada (k = 6) and 
South Korea (k = 1). The most commonly used diagnostic standards included structured 
interviews (SCID, k = 6) and clinician assessments (Clinician Administered PTSD Scale 
[CAPS], k = 8). Some also used patient-reported outcome measures such as the PTSD Checklist 
(PCL, k = 6). Six studies used machine learning to develop their models. All 14 studies 
addressed the accuracy of their predictive models, and 6 undertook model validation (Table 5). 
Five studies included US Veterans or active military populations, with 3 of these including 
combat-exposed persons; more information about these studies is provided in the section below. 

Prognosis and Treatment Response 

Six studies evaluated predictive models using structural MRI (k = 2)80,81 or fMRI (k = 4; 2 
resting fMRI and 2 task-specific).82-85 All studies reported on predictive models for response to 
psychotherapy as treatment for PTSD, using CAPS to assess PTSD severity (Table 6). One study 
included both psychotherapy and TMS.85 Two studies were RCTs82,85 and the remaining were 
cohorts. Sample sizes ranged from 53–135, with most having N < 100 (k = 5). All studies 
included relatively young adults, with mean ages below 40 years of age. One study used machine 
learning methods,84 and 3 assessed model accuracy and validation.80,84,85 Two studies included 
combat-exposed Veterans, both conducted in the Netherlands.80,81 

Table 6. Summary of Characteristics of Studies Evaluating MRI to Predict 
Response to Psychotherapy for Posttraumatic Stress Disorder 

 Response to Psychotherapy (k = 6) 
Population characteristics  

Veteran or active military 3a 
Combat exposed 2a 
TBI  ― 
Comorbid alcohol use disorder 1 

Country  
US 4 
Netherlands 2 

  



Neuroimaging for Mental Health Evidence Synthesis Program 

31 
 

 Response to Psychotherapy (k = 6) 
Sample sizes (total N)  

30–99 5 
100–140 1 

Age (mean or median, years)  
18–25 1 
26–44 4 
45–64 ― 
>65 ― 
NR 1 

% Women  
0–15 3 
16-–60 ― 
61–70 2 
NR 1 

Race reported? 1 
Study design  

Cohort/longitudinal 4 
RCT 2 

Measures of response or change  
Clinician assessments 6 
Patient-reported outcomes 1 

Analytic methods  
Machine learning 1 
Model accuracy assessed 3 
Models validated 2 

Notes. a Includes 1 non-US Veteran study. 
Abbreviations. MRI=magnetic resonance imaging; NR=not reported; RCT=randomized controlled trial; TBI=traumatic 
brain injury. 

EEG and Evoked Potentials 

Five studies evaluated EEG for PTSD and all focused on diagnosis (Table 5).47,86-89 All were 
cross-sectional and only 1 had N > 100 (N = 157).47 Most were conducted in the US (k = 3), 1 in 
South Korea, and 1 in Iran. Most used clinical interviews (SCID [k = 3] and/or CAPS [k = 2]) as 
the diagnostic standard (k = 4),47,86,87,89 and 1 used only patient-reported measures.88 All assessed 
sensitivity and specificity, but only 1 undertook model validation.86  

Other Neuroimaging Techniques (MEG, SPECT, PET) 

Six studies evaluated other imaging techniques, including MEG (k = 3),77,90,91 SPECT (k = 
2),92,93 and PET (k = 1)94; all of these focused on diagnosis of PTSD and were cross-sectional 
(Table 5). Most were conducted in the US (k = 5), with N = 44–397. Three included US 
Veterans,90,91,93 and 2 also had participants with TBI.92,93 All used the SCID and/or CAPS as the 
diagnostic standard and assessed the accuracy of their models; 2 undertook model validation.90,91 
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Studies in Veteran Populations 

Thirteen studies were conducted in Veteran populations, most with US Veterans (k = 
10)76,82,86,89-91,93,95-97, 2 with combat-exposed Veterans from the Netherlands,80,81 and 1 included 
combat-exposed members of the Canadian Armed Forces.77 We focus here on the 10 studies of 
US Veterans. 

Diagnosis 

Of the 10 studies in US Veteran populations, most evaluated diagnosis (k = 9)76,86,89-91,93,95-97. 
About half used MRI-based techniques (structural MRI k = 1, fMRI k = 4, DTI k = 1), while 
fewer used other methods (SPECT k = 1, MEG k = 2, EEG k = 2). Half of studies were 
conducted in populations who were also diagnosed with TBI (k = 5), all of which also included 
combat-exposed persons.76,86,89-91,93,95-97 These were relatively small studies with N = 32–196 and 
4 studies with N < 100. The diagnostic standards included the SCID, CAPS, and patient-reported 
measures such as BDI, PCL, or PHQ. About half undertook model validation (k = 6). 

Prognosis and Treatment Response 

One small RCT (N = 53), conducted in a comorbid population with PTSD and alcohol use 
disorder, used fMRI data to predict response to an integrated psychotherapy for both 
conditions.82 

TRAUMATIC BRAIN INJURY  
Overview  

Of 12 articles that addressed TBI, most evaluated diagnosis (k = 10) and the remaining 2 
reported on prognosis of disability (Table 7). The majority used MRI-based techniques (k = 8) 
and fewer used EEG (k = 2), SPECT (k = 2), and MEG (k = 1). Most were cross-sectional (k = 
10), small in size (eg, 9 studies with N < 100), and included younger populations (mean age 
<45). Half of the studies included PTSD populations; all of these focused on diagnosis and were 
cross-sectional, and 5 evaluated combat-exposed US Veterans.  
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Table 7. Summary of Characteristics of Included Studies Addressing Traumatic 
Brain Injury 

 
Diagnosis  
(k = 10) 

Prediction of Disability  
(k = 2) 

Neuroimaging/neurophysiologic technique   
Structural MRI 3 2 
Functional MRI 2 ― 
DTI 2 ― 
SPECT 2 ― 
MEG 1 ― 
EEG 2 ― 

Population characteristics   
Veterans and/or active military 7 ― 
Combat exposed 7 ― 
PTSD 6 ― 

Country   
US 10 ― 
Othera ― 2 

Sample sizes (total N)   
30–99 5 2 
100–199 2 ― 
>200 1 ― 

Age (mean or median, years)   
18–25 ― ― 
26–44 8 2 
45–64 1 ― 
>65 ― ― 
NR 1 ― 

% Women   
0–15 6 ― 
16–40 3 1 
NR 1 1 

Race reported? 6 ― 
Diagnosis/prognosis standard   

Clinician interviews 4 ― 
Clinician assessments 6 2 
Patient-reported outcomes 5 ― 
Hospital records 1 ― 

Study design   
Cross-sectional 10 ― 
Cohort/longitudinal ― 2 
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Diagnosis  
(k = 10) 

Prediction of Disability  
(k = 2) 

Analytic methods   
Sensitivity/specificity (or PPV/NPV) 7 ― 
Machine learning ― 1 
Models validated 3 ― 

Notes. a Includes Taiwan and Norway. 
Abbreviations. DTI=diffusor tensor imaging; EEG=electroencephalogram; fMRI=functional magnetic resonance 
imaging; MEG=magnetoencephalography; MRI=magnetic resonance imaging; NPV=negative predictive value; 
PPV=positive predictive value; PTSD=posttraumatic stress disorder; RCT=randomized controlled trial; 
SPECT=single-photon emission computerized tomography. 

MRI-based Techniques (Structural and Functional MRI, DTI, and ASL) 

Diagnosis  

The majority of identified studies evaluating diagnosis for TBI used MRI-based techniques (k = 
6), including structural MRI (k = 3),95,98,99 fMRI (k = 2, both resting fMRI),96,97 and DTI (k = 
2).96,100 One study also included MEG.99 All were cross-sectional studies conducted in the US. 
Diagnostic standards included patient-reported measures (k = 5), clinician assessments (k = 5), 
and structured clinical interviews (k = 1). Half assessed sensitivity and specificity (k = 3), and 2 
undertook model validation. Most were small, with N < 100 (k = 5). Most included populations 
of US combat-exposed Veterans (k = 5).  

Prognosis and Treatment Response 

Both studies evaluating prognosis for TBI used MRI-based techniques. One was conducted in 
Taiwan101 and the other in Norway.102 Both were small cohort studies (N = 47–70) and 
investigated predictive models for global disability at least 1 year after injury, measured using 
the Glasgow Outcome Scale-Extended (GOSE). None included Veteran or active military 
populations.  

EEG and Other Neuroimaging Techniques  

Two cross-sectional US-based studies evaluated EEG and both focused on diagnosis of TBI.89,103 
One used hospital records as the indicator for TBI,103 and the other used the SCID.89 Both 
assessed sensitivity and specificity, but only 1 undertook model validation. Both were very small 
(N = 30–32). Two studies used SPECT to address diagnosis for TBI.92,93 Both included 
participants with PTSD, and are described in the PTSD section above. 

Studies in Veteran Populations 

Seven studies included combat-exposed US Veteran populations.89,93,95-97,99,100 All focused on 
diagnosis and were cross-sectional, with most using MRI-based techniques (k = 5). One each 
used EEG, SPECT, or MEG (this study also used MRI).Most of these included participants with 
co-occurring PTSD and are described above (k = 5).89,93,95-97 The other 2 studies also had small 
samples (N = 84–109) of young and middle-aged adults (mean age 28–48).99,100 



Neuroimaging for Mental Health Evidence Synthesis Program 

35 
 

SUBSTANCE USE DISORDERS  
Overview  

Twenty studies addressed SUD, with the majority evaluating alcohol use disorder (k = 12) 
(Table 8).82,104-114 Remaining studies focused on cocaine use disorder (k = 3),115-117 opioid use 
disorder (k = 2),118,119 and methamphetamine use disorder (k = 3).120-122 More than half used 
structural and/or functional MRI (k = 12) or other MRI-based techniques (ASL, k = 2).117,121 
Eight evaluated EEG or evoked potentials98-100,102,104,105,110,111; none used any other imaging 
techniques. About half focused on diagnosis (k = 9),105,106,108,110,112,114,118,119,121 while the rest 
evaluated prediction of relapse (k = 6) or treatment response (k = 5).82,104,107,109,111,113,115-117,120,122 
Most evaluated the accuracy of their diagnostic or prognostic models (k = 16), and nearly half 
undertook model validation (k = 8). Most studies were very small with N < 100 (k = 14); 1 study 
had a total sample greater than 1000 (N = 1,376).107 About half used machine learning methods 
to develop models (k = 11). Studies were most commonly conducted in the US (k = 10) and 
China (k = 3). 

Table 8. Summary of Characteristics of Included Studies Addressing Substance 
Use Disorder 

 

Diagnosis 
(k = 9) 

Prognosis 

Prediction of 
Relapse (k = 6) 

Response to 
Treatment (k = 5) 

Neuroimaging/Neurophysiologic technique    
Structural MRI 2 1 2 
Functional MRI 1 3 4 
ASL 1 ― 1 
EEG 6 2 ― 

Substance    
Alcohol 6 4 2 
Opioid 2 ― ― 
Methamphetamine 1 1 1 
Cocaine ― 1 2 

Population characteristics    
Veterans and/or active military ― 1 2 
Inpatient or residential treatment 4 2 3 

Country    
US 2 4 4 
China 2 ― 1 
Europe ― 2 ― 
Othera 5 ― ― 

Sample sizes (total N)    
30–99 6 4 4 
100–200 3 1 1 
>1,000 ― 1 ― 
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Diagnosis 
(k = 9) 

Prognosis 

Prediction of 
Relapse (k = 6) 

Response to 
Treatment (k = 5) 

Age (mean or median, years)    
18–25 ― ― ― 
26–44 5 5 4 
45–64 3 ― 1 
NR 1 1 ― 

% Women    
0–15 4 1 2 
16–40 1 5 3 
41–70 2 ― ― 
NR 2 ― ― 

Race reported? 1 ― 1 
Included information on genetics? ― 1 ― 
Study design    

Cohort/longitudinal ― 2 1 
Cross-sectional 9 ― ― 
RCT ― ― 1 

Analytic methods    
Machine learning 6 4 1 
Model accuracy assessed 9 4 3 

   Models validated 5 2 1 
Notes. aIncludes Turkey, Malaysia and India. 
Abbreviations. ASL=arterial spin labeling; EEG= electroencephalogram; MRI=magnetic resonance imaging (structural 
or functional); NR=not reported; RCT=randomized controlled trial.  

MRI-based Techniques (Structural and Functional MRI, and ASL) 

Twelve studies used MRI-based techniques for diagnosis of SUD (k = 3), or prognosis (k = 9) 
(Table 8). Four used structural MRI,105,111,115,121 7 used fMRI (5 resting and 2 task-
specific),82,104,109,114,116,120,122, and 1 used MRI, resting fMRI, and ASL.117 Six evaluated alcohol 
use disorder,82,104,105,109,111,114 3 addressed methamphetamine use,120-122 and 3 examined cocaine 
use.115-117 Three-quarters evaluated participants in residential or inpatient treatment (k = 8). The 
most common locations were the US (k = 8) and China (k = 3). All studies were small, with N = 
45–188. Seven used machine learning and 5 undertook model validation. 

EEG and Evoked Potentials 

Eight studies used EEG data: 6 for diagnosis of SUD106,108,110,112,118,119 and 2 for predicting 
abstinence over a year or more.107,113 Most studies addressed alcohol use disorder (k = 6),106-

108,110,112,113 while the remaining 2 examined opioid use disorder.118,119 Four studies used machine 
learning and 3 undertook model validation. 



Neuroimaging for Mental Health Evidence Synthesis Program 

37 
 

Studies in Veteran Populations 

Three studies included US Veteran populations and all focused on prognosis and treatment 
response. One was an RCT including participants with comorbid PTSD and alcohol use 
disorder,82 while the other 2 were cohort studies including both Veteran and civilian 
populations.111,122 One of these also addressed alcohol use disorder111 and the other examined 
methamphetamine use disorder.122 All three used structural MRI or fMRI. Two evaluated 
prediction of relapse111,122 and 1 focused on response to psychotherapy.82 None validated their 
predictive models. 

OBSESSIVE COMPULSIVE DISORDER (OCD) AND ANXIETY 
DISORDERS 
Obsessive Compulsive Disorder  

Diagnosis  

Seventeen studies focused on diagnosis of OCD, with 4 using structural MRI data,123-126 11 using 
resting fMRI,127-137 and 1 each with DTI138 and EEG139 (Table 9). Eleven used SCID as the 
diagnostic standard,123-127,131,134-138 while 14 studies used the Yale Brown Obsessive Compulsive 
Scale (Y-BOCS).123-132,134,135,137,138 Nearly all studies assessed sensitivity and specificity (k = 14) 
and evaluated model accuracy (k = 14). Seven studies undertook model validation and 5 used 
machine learning. All studies had N < 200 and included young adults. Half had 16–40% women 
participants (k = 9), and 6 included 41–70% women. Most included healthy controls as the 
comparator (k = 14) and were conducted in China (k = 14). 

Prognosis & Treatment Response 

Only 2 studies evaluated prognosis of OCD; 1 Korean study employed structural MRI to predict 
response to psychotherapy,140 and 1 US study used fMRI to examine response to antidepressants 
(Table 9).141 Both studies used machine learning analyses and validated models. Total study 
sample sizes were 42 and 131, and both included young adults and substantial proportions of 
women (38–52%).  

Table 9. Characteristics of Included Studies Addressing Obsessive Compulsive 
Disorder 

 
Diagnosis 
(k = 17) 

Treatment Response 
(k = 2) 

Neuroimaging/Neurophysiologic technique   
Structural MRI 5 1 
Functional MRI (fMRI) 12 1 
DTI 1 ― 
EEG 1 ― 

Other groups included   
Healthy controls 14 1 
Unmedicated controls 1 ― 
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Diagnosis 
(k = 17) 

Treatment Response 
(k = 2) 

Country   
US ― 1 
China 14 ― 
UK/Europe ― ― 
Othera 3 1 

Sample sizes (total N)  
30–99 7 1 
100–249 9 1 

Age (mean or median, years)  
18–25 3 1 
26–44 13 1 
NR 1 ― 

% Women  
16–40 9 1 
41–70 7 2 
NR 1 ― 

Race reported? 1 ― 
Diagnosis/prognosis standards   

Clinician interviews 12 ― 
Clinician assessments 8 1 
Patient-reported outcomes 16 1 

Study design   
Cross-sectional 16 ― 
Cohort/longitudinal observational 1 2 

Analytic approach      
   Sensitivity/specificity 15 ― 

Machine learning  7 2 
Models validated 8 ― 

Notes. aIncludes Turkey, Korea, Japan. 
Abbreviations. DTI=diffusion tensor imaging; EEG=electroencephalogram; MRI=magnetic resonance imaging; 
NR=not reported. 

Anxiety Disorders 

Diagnosis  

Four studies addressed diagnosis of anxiety disorders, all using either structural MRI (k = 1)142 
or fMRI (k = 3; 1 resting and 2 task-specific) (Table 10).143-145 All studies used the SCID and/or 
the Hamilton Anxiety Rating Scale (HAM-A) as the diagnostic standards. Three studies were 
cross-sectional142-144 and 1 was a cohort.145 All evaluated the sensitivity, specificity, and 
accuracy of models, and 3 undertook model validation. Two studies used machine learning. 
Sample sizes were small (N = 40–93) and included young adults with substantial representation 
of women.  
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Prognosis and Treatment Response 

Six studies evaluated prognosis in anxiety disorders, with 2 using structural MRI146,147 and 4 
fMRI (all task-specific) 83,148-150 (Table 10). Specific disorders examined were general anxiety 
disorder (k = 4),83,146-148 social anxiety disorder (k = 1),149 and panic disorder (k = 2).83,150 Four 
studies addressed response to psychotherapy,83,147,149,150 1 evaluated outcomes after 
antidepressant therapy,146 and 1 examined response to a computer-based behavioral 
intervention.148 Sample sizes ranged from 34–135, most participants were young adults, and most 
studies had more than 50% women (k = 5). 83,146,148-150  Four studies were conducted in the 
US,83,147-149 while the other 2 occurred in Europe.146,150 Most studies assessed model accuracy 
and undertook model validation (k = 5).146-150 Two studies used machine learning.146,150   

Table 10. Characteristics of Included Studies Addressing Anxiety Disorders 

 
Diagnosis 
(k = 4) 

Treatment Response 
(k = 6) 

Anxiety disorder   
Generalized anxiety disorder 3 4 
Social anxiety disorder 1 1 
Panic disorder 1 2 

Neuroimaging/neurophysiologic technique   
Structural MRI 1 2 
Functional MRI 3 4 

Other groups included   
Healthy controls 4 1 
Unmedicated controls ― 1 

Country   
US 2 4 
China 2 ― 
UK/Europe ― 2 

Sample sizes (total N)   
30–99 4 5 
100–249 ― 1 

Age (mean or median, years)   
18–25 2 2 
26–44 1 4 
NR 1 ― 

% Women   
16–40 1 1 
41–70 2 3 
>70 1 1 

Race reported? 1 2 
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Diagnosis 
(k = 4) 

Treatment Response 
(k = 6) 

Diagnosis/prognosis standards   
Clinician interviews 3 ― 
Clinician assessments 3 3 
Patient-reported outcomes 3 2 

Study design   
Cross-sectional 3 ― 
Cohort/longitudinal observational 1 6 

Analytic approach   
Sensitivity/specificity 4 ― 
Machine learning  2 2 
Models validated 2 5 

Abbreviations. MRI=magnetic resonance imaging; NR=not reported. 

SYSTEMATIC REVIEWS 
We identified 30 eligible systematic reviews. Consistent with our findings for primary studies, 
the majority of reviews addressed depression (k = 17) with fewer evaluating the other conditions: 
anxiety disorders (k = 3), bipolar disorders (k = 4), PTSD (k = 2), TBI (k = 3), or OCD (k = 1). 
No eligible review addressed SUD, and none reported on more than 1 condition (Table 11). Most 
systematic reviews included MRI-based techniques (k = 16) or a number of neuroimaging or 
neurophysiologic data (k = 7). Fewer focused on EEG (k = 5), PET (k = 1), or SPECT (k = 1). 

About half of reviews examined diagnosis (k = 16), 15 addressed response to treatment, and 3 
evaluated change in symptoms or functioning. Four reviews reported on both diagnosis and 
prognosis (Table 11).151-154  

The number of studies included by reviews varied widely, ranging from 11–352. Eight reviews 
included less than 20 primary studies, 10 reviews included 20-49, 10 reviews had 50-99, and 2 
reviews included ≥100 primary studies. One was an umbrella review that included 24 other 
systematic reviews, comprising 352 individual primary studies.155 

Appendix E provides detailed characteristics of eligible systematic review, including condition 
studied, outcomes reported, and number of studies included. 

Table 11. Summary of Eligible Systematic Reviews 

 Depression  
(k = 17) 

Bipolar 
Disorders  
(k = 4) 

PTSD  
(k = 2) 

TBI 
(k = 3) 

OCD  
(k = 1) 

Anxiety 
Disorders (k = 3) 

Diagnosis 9 3 1 2 1 2 
Prognosis        

Response to treatment 11 2 ― ― ― 1 
Change in symptoms 
or functioning 1 ― 1 1 ― ― 

Abbreviations. OCD=obsessive compulsive disorder; PTSD=posttraumatic stress disorder; TBI=traumatic brain injury.



Neuroimaging for Mental Health Evidence Synthesis Program 

41 
 

DISCUSSION 
SUMMARY OF KEY FINDINGS 
To assist the VA with determining next steps in the application of precision medicine to 
Veterans’ healthcare and research, we conducted an evidence map of neuroimaging and 
neurophysiologic biomarkers in mental health and TBI. We identified 313 eligible primary 
studies and 30 eligible systematic reviews. The majority of primary studies (70%) and reviews 
(57%) addressed depression, while fewer studies and reviews examined other conditions of 
interest. Most primary studies used MRI-based neuroimaging techniques (75%) and a fifth 
employed EEG (22%). Two-thirds of primary studies (64%) focused on diagnosis for conditions 
of interest, and nearly all of these (91%) were cross-sectional. Half of primary studies (52%) 
employed machine learning to analyze neuroimaging or neurophysiologic data and develop 
diagnostic or prognostic models. Primary studies generally included young and middle-aged 
adults, with only 5 studies having participants with mean ages of 65 or older. Studies were 
conducted in diverse locations around the world, with the most common being China (35%) and 
the US or Canada (30%); very few studies (5%) were conducted in more than 1 country. Overall, 
most of the evidence came from very small studies. For example, among 98 studies using 
structural and/or functional MRI to address diagnosis for depression, 51% had less than 100 
participants, while only 5% had 500 or more participants. Only 14 primary studies included US 
Veterans or active military service members; 12 addressed PTSD and/or TBI, and 2 evaluated 
SUD. 

Key findings for primary studies include: 

• Many studies evaluated the use of structural or functional MRI in diagnosis and 
prognosis of depression, but there were important methodological concerns: 

o Nearly all diagnostic studies were cross-sectional, small in size, and included 
participants with variable past histories of symptoms and treatments. 

o Prognostic studies mostly focused on response to antidepressants, and were also 
generally small. 

• A substantial number of studies used EEG for diagnosis and prognosis of depression, but 
these had similar methodological issues as noted above.  

• Most studies on bipolar disorder were small and cross-sectional, included participants 
with depression, and focused on diagnosis. 

• Studies evaluating PTSD were small and cross-sectional, and mainly used structural or 
functional MRI to address diagnosis.  

• Studies examining TBI were small and cross-sectional, often included participants with 
co-occurring PTSD, and mainly used structural or functional MRI to address diagnosis. 

• Studies on SUD used structural or functional MRI and EEG, most addressed alcohol use 
disorder, and half evaluated prediction of relapse or response to treatment. 

• Studies on OCD and anxiety disorders were small and cross-sectional, mainly used 
structural or functional MRI, and focused on diagnosis. 
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• Fourteen studies included US Veterans, addressing PTSD and/or TBI, or SUD: 

o All 11 diagnostic studies were cross-sectional, 2 prognostic studies were cohorts, 
and 1 was an RCT. 

• None evaluated prediction of adverse or side effects from treatments. 

IMPLICATIONS FOR VA POLICY 
We found a large number of studies mainly using MRI-based techniques to evaluate diagnosis 
and prognosis for depression, but there were substantial methodological limitations for the 
majority of this evidence. Additionally, none of the depression studies were conducted with US 
Veterans or military service members. Given that neuroimaging tests are costly and time-
consuming to conduct (and analyze), it is not clear that using such tests adds value in the clinical 
setting or that they could replace current standards for diagnosis of depression, which involve 
structured interviews and clinician assessments. Regarding prognosis, neuroimaging techniques 
may potentially aid in predicting early response and/or selection of appropriate therapies, but 
most studies included participants with variable histories of symptoms and past treatments. Only 
2 studies focused on participants with their first episode of depression. Furthermore, no study 
evaluated prediction of adverse or side effects of treatments, whereas this is often an important 
factor in patient and clinician decisions to stop or switch antidepressants. There were fewer 
studies using EEG to examine depression, and this evidence base has similar limitations as that 
evaluating MRI-based techniques. Thus, it is unclear how these data could be incorporated into 
current clinical practice to improve diagnosis or treatment selection and/or monitoring for 
depression. Future systematic reviews focused on these techniques for diagnosis and/or 
prognosis in depression may also be needed to better characterize their potential utility for 
clinical care. 

We found considerably less evidence addressing other mental health conditions and TBI, and 
fewer studies using other neuroimaging and neurophysiologic techniques. Although there were 
some studies on PTSD, TBI, and SUD that included US Veterans or military service members; 
overall, these shared the same methodological limitations as noted above. Therefore, it also 
appears premature to implement MRI (and other neuroimaging and neurophysiologic techniques) 
in the clinical diagnosis and treatment of these other conditions.  

GAPS IN EVIDENCE AND FUTURE RESEARCH 
As noted above, there are important methodological concerns regarding the evidence on 
neuroimaging and neurophysiological techniques for evaluating diagnosis and prognosis of 
mental health conditions and TBI. While there are a large number of studies examining 
depression (using MRI or EEG), these are largely small in sample size and the majority used 
cross-sectional data to evaluate diagnosis. Additionally, participants often had variable 
trajectories of symptoms and treatments preceding data collection. These study design issues 
have been previously noted as contributing to problems with replicability and validity of 
neuroimaging and neurophysiologic studies in mental health.15,18,156 Whereas most of the 
identified primary studies had less than 100 participants, current estimates are that thousands of 
individuals are needed to provide stable and valid results regarding important associations 
between neuroimaging findings and clinical phenotypes.15 Furthermore, to account for changes 
in brain structure and functioning over time, current recommendations are to use comparisons 
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with age-standardized findings (developed from large populations),18 instead of using data from 
small samples of age-matched controls. To better understand clinical phenotypes, it is also 
important to have longitudinal data on symptoms and exposures, in addition to considering 
transdiagnostic dimensional approaches.157-159 Having data before certain exposures may be 
particularly important for studies evaluating PTSD and TBI.  

The acquisition and analysis of (longitudinal) data from a large number of individuals will likely 
require large ongoing investments in this research, as well as fundamental changes in research 
organization and incentives that currently promote competition and inhibit data sharing.16,17,160 
Current projects that exemplify the level of resources, organization, and cooperation needed for 
such efforts include the Adolescent Brain Cognitive Development (ABCD) study in the US161 
and the UK Biobank.162  

Therefore, we recommend the following for future research: 

• Consider investment in larger studies (thousands of participants) to identify reproducible 
and precise associations between neuroimaging and neurophysiologic findings and 
mental health phenotypes. 

• Conduct longitudinal studies with data on exposures, symptoms, and neuroimaging and 
neurophysiologic data over the life course. 

• Consider transdiagnostic approaches for describing mental health phenotypes. 

• Particularly for addressing Veterans’ health and outcomes, develop longitudinal studies 
with initial data that precede combat and other service-related exposures. 

LIMITATIONS 
We sought to identify and describe the evidence for a broad range of neuroimaging and 
neurophysiologic tests used to evaluate the diagnosis and prognosis of a large number of mental 
health conditions and TBI. Therefore, we conducted an evidence map that provides descriptive 
information about research studies examining these questions and highlights gaps in the existing 
evidence. Thus, we did not abstract detailed results on the factors included, nor performance 
metrics of, diagnostic or prognostic models using neuroimaging and/or neurophysiologic data. 
We also did not formally evaluate the quality of included primary studies or systematic reviews. 
Additionally, we employed machine learning techniques to assist with the selection of relevant 
studies and reviews; it is possible that we may have missed some eligible studies. We also 
limited our search of the evidence to English language studies and reviews. 

CONCLUSIONS 
Most existing evidence on neuroimaging and neurophysiologic data for mental health conditions 
evaluated use of MRI for diagnosis and prognosis in depression. In addition to the lack of 
evidence on other conditions or using other types of neuroimaging and neurophysiologic data, 
existing studies were limited by small sample sizes and cross-sectional designs. These 
methodological concerns need to be addressed by future research using larger samples with 
longitudinal data. Existing evidence gaps and limitations indicate that it may be premature to 
apply neuroimaging and neurophysiologic tests to evaluate and treat mental health conditions 
and TBI in clinical settings.   
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