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Moderator:	Yes. Thanks so much, Rob. And thank you everyone for joining us today for today’s Cyber Seminar. We’re very excited to have Dr. Fiebert Goldhaber-Fiebert, who is a professor of Health Policy at Stanford University. He’s made significant contributions to the intersection of medicine and economics and public health by using decision models to identify the best approaches to guide complex policies surrounding the prevention and management of increasingly common chronic diseases. So his research spans infectious diseases, cancer screening and healthcare delivery, and we’re thrilled to have you here Dr. Fiebert, and I will pass it over to you without further ado.

Dr. Fiebert:	Thanks all. I’m going to walk through these slides. I’m going to talk about some topics in terms of different types of models that typically are used for medical and public health decision analysis. And I’ll look forward to your questions that will flow via Dr. Jacobs. Okay. So today we’re going to talk a little bit about what is a decision analysis and then specifically type of decision analysis, cost effectiveness analysis. And then we’ll talk a little bit about the simplest sorts of models that typically are used. Decision trees. We’ll then introduce the concept of a sensitivity analysis and then we’ll talk about two more advanced or sophisticated types of modeling that are often used to support decision analysis and cost effectiveness analysis. So here we go. 

What is a decision analysis? A decision analysis is a quantitative method for considering decisions between multiple alternatives and situations of uncertainty. So the key piece is, there is no decision if you don’t have multiple alternatives, so you’re going to allocate resources to one alternative or adopt it or do it and you’re not going to do it for others. There is no decision without having alternatives because we have to be making a choice. The quantitative method that we typically use is that we employ a model. 

And the purpose of the model is because it will sort of gather or hold information. So it’s an explicit representation of what we think we understand about the world. Estimates from various other studies analysis that we’ve done, et cetera. And the explicit structure that we’ve that we’ve described. And we’re going to use the model to assess the consequences, the costs, and benefits or whatnot of each alternative. And we’ll clarify those trade-offs and then we’ll basically select the action or the alternative that gives us the best expected outcome because we’re dealing with uncertainty. 

So the steps of a decision analysis involve, first, we have to enumerate all of the relevant alternatives. What actions could we take. We have to identify the outcomes that are important to the decision-making context in which we’re operating. We’ll determine sort of the fee uncertainties and encode those uncertainties as probabilities. We will value each of the important outcomes. I’ll show examples of this soon. And then we’ll combine these elements basically to get an expected outcome given the uncertainty for each of the alternatives. And that is where decision trees come in. 

Cost effectiveness analysis are a version of such a decision analysis where we are explicitly looking at costs, both those in terms of delivering each alternative. And also potentially averted costs given the actions that we take that might prevent or delay costly events as well as some measures of health. So we’ll talk a little bit more about that later, but basically that’s where a decision analysis becomes a cost effectiveness analysis. It has to do with the fact that we’re going to consider both cost and health outcomes. 

So what is a cost effectiveness analysis? In the context of health and medicine, a cost effectiveness analysis is a method for evaluating trade-offs between the health benefits we might gain from each alternative relative to the costs that we will incur for doing so. So cost effectiveness analysis are intended to support decision makers, and they are not a complete resource allocation procedure themselves. That means that decision makers may rightly and correctly consider a range of inputs to their decision making, not just which strategy is the most cost effective. 

The key part of a cost effectiveness analysis as it’s standardly practice, is what’s called the cost effectiveness ratio. And here I mean the incremental cost effectiveness ratio. So the cost effectiveness ratio is specifically the incremental cost effectiveness ratio, if we think about a decision between two alternatives is the total cost of doing the intervention we’re considering minus the cost of the alternative. So how much additional or how much cost savings there are relative to the alternative and how much health effect there is by doing the intervention we’re considering relative to the alternative. So it’s an incremental analysis. How much more do we spend for how much more do we get. And that’s very, very important. 

So we’re going to use models for both decision analysis and cost effectiveness analysis. And basically we’re going to use those models ultimately to estimate quantities like the cost that we would get under a given intervention versus the alternative and the effect that we might expect to get in the given intervention relative to the alternative. A decision model is a schematic representation of all the clinically and policy relevant features of a decision problem. 

So the structure is going to encode the decision alternatives, the clinically, and policy relevant outcomes, and the sequence of potentially uncertain events that lead to those outcomes under each of those alternatives. So the model enables us to integrate knowledge about the decision problem from many sources. The probabilities, and the values, and to compute expected outcome averaging over uncertainties under each decision alternative. So when we’re building a decision analytic model, we’re going to define the model structure. We’re going to assign probabilities to all the chance events in that structure. 

We will assign values like health-related quality of life for utilities to all of the outcomes encoded in the structure. And then we will evaluate the expected utility or expected outcomes of each decision alternative, and then we will also perform a set of sensitivity and uncertainty analysis. The dogma for modeling is, you should make it as simple enough to be understood and complex enough to capture the problems—elements, the salient elements of the problems convincingly, and to be explicit about your assumptions. 

The other thing that is true, this is actually said not about sort of decision models, but it absolutely applies to them as well is, all models are wrong, but some models are useful. All models are wrong in the sense that they are abstractions from the complex reality that is the real world. Models can be useful when they encode enough of the world’s complexity to allow us to consider decisions in a timely fashion. Even when we know that under certain conditions they may be wrong in the sense that they do not predict everything correctly in the real world. 

So let’s walk through the steps of building a decision analytic model, and we’ll start by thinking about defining the model structure. So what are the elements of a decision tree structure? The simplest kind of model we’ll consider today. So the first is we have what’s called a decision node. It’s the place in the decision tree at which there’s a choice between one of several alternatives. So in the example I have here, there are three alternatives. I can treat medically, I could do something else, or I could do surgery. The choices have to be mutually exclusive, meaning if I’m doing medical treatment, I’m not doing surgery. If I could do both medical treatment combined with surgery, we’d have another branch called both medical and surgery. 

A chance node in a tree is a place where there is a probability that various outcomes occur. So we could have die or do not die, or in this case we have die, no complications or complications. And the set of things that could happen at a chance node need to be mutually exclusive, meaning only one of them can occur and they need to be collectively exhaustive. Which means, at least one of them occurs. So one and only one of the events will occur at each chance node in our tree, and that’s how we get to define these things. And the probabilities that go along with these chance nodes have to sum to one. 

Okay, so mutual exclusive. Only one alternative can be chosen. Only one event can occur. Collectively exhaustive. At least one event must occur. One of the possibilities must happen. Taking together the possibilities make up the entire range of outcomes. Finally, we have what we call terminal nodes. These are the final outcomes associated with each pathway of choices and chances. So a final outcome must be valued in relevant terms. Cases of disease, life years, quality adjusted life years. Costs. We can attach multiple values, so this could be 30 years 3,000 dollars. 

And then we could compute the tree for each outcome if we want to and we can get the expected costs and the expected outcomes as well. So in summary, a decision tree is made-up of decision nodes, chance nodes, and terminal nodes. Decision nodes enumerate the choices that we’re going to make. The chance nodes enumerate the possible events that could occur along the way and the probabilities of those occurring. And the terminal nodes represent outcomes that occur along each of those pathways and the values that we assign to them. 

So let’s take an example decision tree. Let me describe it first, and then we’ll build it up together. So a patient presents with some sort of symptoms. It’s likely that it’s some sort of serious disease. But we’re not sure whether it’s that disease without initiating treatment. We have two treatment alternatives, surgery, which is potentially risky in terms of surgical mortality. And medical management, which has a low success rate but is much less risky. With surgery, one must assess the extent of disease only after sort of opening the—kind of starting the surgery and then decide whether to perform curative or palliative surgery. And the goal is to maximize—in this particular decision, I’m saying the goal is to maximize life expectancy of this patient, who may or may not have this serious disease. 

So we have an initial decision between surgery or medical management, hence the decision node. For medical management, there’s a chance that the disease is present. I.e., sort of the prevalence of disease and the chance that it’s absent. One minus the prevalence. If the disease is present and I’ve given medical management, then there’s the chance that medical management will cure the disease and there’s a chance that it will not cure the disease. And then we’ll attach outcomes to the ends of cure, no cure, and disease absent but I got treated with medicine. 

For surgery, similarly, the disease is either present or not present. And that prevalence is going to be the same because surgery and medical management don’t change the prevalence of disease at the time that we start. If your disease is absent and you start surgery and you realize that the person either lives, or they have surgical death. And if the disease is present, you have a decision. I’m going to try to cure this with sort of a more aggressive surgery or I’m going to try to palliate. And then there’s some risk of surgical death depending upon the type of surgery performed. And then if they do not die during surgery, there is a chance of cure or no cure. Obviously, this is a highly stylized, non-clinically relevant example, but it should illustrate a structure for you. 

So when I was talking about a pathway, I could ask what’s the life expectancy for somebody who has surgery in whom the disease was present, and the decision was to try to cure the disease via the surgery and they survived the surgery and the surgery is successful and effects cure. What would be the outcomes there? So that’s each of these pathways is one set of pathway that some fraction of people who face this initial decision will flow down depending upon the probabilities and the decisions. 

So we’re going to add probabilities to our model so you can sort of see that the surgical mortality is higher for people if you try to do this more aggressive surgery. Ten percent versus palliation two percent and the surgical mortality is somewhat higher for people who have the disease present as opposed to not. But let’s suppose these came from studies or experts or meta-analysis or primary data analysis. Somehow we get these probabilities and now we add outcomes. And like we said, we’re focusing on life expectancy, so if you die in surgery, you have zero additional life years to be lived. If you’re not cured, the disease, you survive on average two years. 

If you are cured or you didn’t have the disease at all, you survive 20 years. So the way we sort of compute the expected outcomes under medical management and surgery is through a process called averaging out and folding back. At chance nodes we average out 10 percent of 20 years, 90 percent of 2 years the expected life years across that chance node is 3.8 years. And then we continue this process at each of the chance nodes of averaging out. And so for medical management, we expect 18.38 life years. 

For surgery we continue this process averaging out on these chance nodes until we get to a decision. At a decision we fold back. Meaning we choose the decision arm that has the highest expected value. So we’re going to choose try cure. And now we’re going to continue averaging out the tree. And ultimately what we see is that we get 19.46 life years on expectation with surgery, 18.38 years with medical management. And so the incremental gain in life expectancy is 1.08 years. And so we recommend surgery with a try cure surgical option as the thing that is best on expectation in this patient population if that was our goal. 

So that is decision trees and sort of the process of averaging out and folding back. If we had a second outcome that we had originally attached to all of those terminal nodes, which was the cost and we averaged out and folded back, we might get the incremental cost. And then we could get the incremental cost per life year gained. And perhaps if we’re willing to pay 9,167 dollars per life you’re gained or more, then we would choose surgery with the curative option. Otherwise we’d recommend medical management. So that gets us through the first part, which is this notion about decision trees and averaging out and folding back. 

Now the next thing that one should be thinking about is the fact that the averaging out and folding back was very dependent on both the values we attached to the outcomes and also the probabilities that we assign to each of those chance event. And all of those things have some level of uncertainty in them or they might be different depending upon maybe high-volume surgical centers and low volume surgical centers. So we want to perform sensitivity analysis. Now the most important thing to note about a sensitivity analysis is, when we say sensitivity analysis, we’re talking about whether the decision is sensitive. The decision that we—to choose one alternative to the other is sensitive to whatever these model inputs are. These probabilities or these values.

So it doesn’t matter whether this number 1.08 goes between 2 and 10 when we change some input. What matters is whether it crosses to zero and below. And so we would change and we would choose, for example, medical management instead of surgery. So a decision is sensitive to a parameter, to an input if which thing we would choose would change over the range of inputs. And I will now make that explicit. So our probabilities and our outcomes are insensitive, and so we’re going to maybe in sensitivity analysis, we will vary some of these inputs and look at whether we would change from choosing surgery to choosing medical management for example. 

So sensitive analysis is a systematic way of asking what if questions. And to see whether our decision results change. And will determine how robust the decision is to changes in parameters. How high would that parameter have to be or lower that parameter have to be for us to change. And we can do this not only one parameter at a time, but multiple parameters at a time. So for example, what we might want to think about as a first pass is, what would be the case if trying a curative surgery on people who have the disease is more or less risky in terms of surgical death. Either maybe because you’re at a lower volume place or maybe this is estimated with some degree of uncertainty. 

So if I vary that from ten percent, which is what we had in our base case, and I continue changing that, I can see what the life expectancy is for surgery curative, which declines. As the risk of death from curative surgery goes up, the life expectancy for that strategy goes down. What we also see is that we wouldn’t choose medical management until the risk of surgical deaths was 70 percent or higher. And depending upon how uncertain we are or what’s plausible, that threshold may be well out of what would be a feasible range, in which case our decision is robust to uncertainty. If the threshold maybe was only at 12 percent, in fact, our decision might be quite sensitive to the risk of curative surgical death. So that’s a sensitivity analysis. 

Likewise, we could simultaneously vary the prevalence of disease and the probability of curative surgical death. So what we see here in this two-way analysis is the region, the combinations of these two values where we prefer surgery and the region where we would prefer medical management. So when the prevalence of disease is really low and the probability of surgical death is really high, then we would prefer medical management. But what we also see is that our base case is very far away from this probability of surgical death. 

That’s not really what’s driving this decision, and maybe we’re less clear about what the prevalence is so you know, maybe this prevalence is whatever it was in the base case. But in fact, that maybe this is four percent or three percent or something like that. I don’t really know. But if the prevalence were we’re uncertain about it, it might be the case that we’d be uncertain about whether we should do medical management or not. So that’s a multi way sensitivity analysis. Okay, so before we start the actually—let’s do the poll first and then we’ll take any questions that we’ve accrued until now. So here’s the poll which has just been placed up there. So sensitive activity analysis. Choose all the answers for what you believe—you believe is correct. What does sensitivity analysis tell us?

Rob:	Dr. Goldhaber-Fiebert, that poll is open. I’m sorry if I mispronounced your name.

Dr. Fiebert:	That’s fine. Looks like we have about 20 percent finishing. We’ll give it another minute or so, no problem.

Rob:	Just let me know when you want to close it and I’ll go ahead and do that and then I can share the results out so that everybody sees them. And attendees, by the way, if you are not filling out—if you’re not making choices, we see that as well. Not individually, but we’d like as many people to take this poll as possible.

Dr. Fiebert:	Okay, so I’m going to give it another ten seconds and then we’ll call it quits.

Rob:	Okay. Say the word.

Dr. Fiebert:	Alright, let’s call it quits. So the first possible answer is, how much model outputs change based on changes to the inputs. So that’s, but that’s not really the focus of the sensitivity analysis. That’s going to be along the pathway for what’s the most important thing that sensitivity analysis do, which is tell us whether our decision would change with different values of the inputs. How uncertain we feel about this decision, that’s not really what it does. If we have a wider range of parameters that might reflect our uncertainty, but that’s not kind of the outcome of the sensitivity analysis. And of course, the sensitivity analysis doesn’t tell us whether the decision is politically sensitive. It looks like most of you chose A and B and what I would tell you is, B or number two is the is really the key focus of sensitivity analysis. When our decision change across the range of plausible values of our parameter or parameters. 

Alright, I’m going to continue to the next part of the talk. So there is a more advanced—and this gets at this uncertainty piece. There’s a more advanced type of sensitivity analysis called a probabilistic sensitivity analysis. So instead of just changing parameters across a range where I don’t say how likely each of the parameter values are to be, in probabilistic sensitivity analysis, we assign probability distributions about each of the quantities. And then we sample from those probability distributions many times. 

We evaluate the decision many times and we ask questions like, what fraction of those samples would we choose surgery versus medical management. And what’s the expected outcome of surgery averaging across those samples. And that gets really at this notion of our certainty as opposed to our sensitivity across a range. So that’s sort of this notion of probabilistic sensitivity analysis. And like I said, that’s an advanced topic. There’s some readings at the end that are listed in the slides that have more information about that if you are interested in learning more about that. But that’s what I’ll say about it now. 

Okay, so now we’re going to talk about Markov models as opposed to decision trees. So the problem—so decision trees are actually extremely powerful tools and I’ll illustrate an example when there’s a chance in a given decision problem of having repeated events occurring over time or repeated decisions occurring over time. So in the decision model, typically it’s sort of like one-time immediate action and then if you do something, you can change the likelihood of good outcomes versus bad outcomes. That’s sort of a very super stylized version of kind of typically what might be in sort of a decision tree kind of analysis. 

But imagine for example, at each time somebody could be in a healthy state in a sort of free disease state or in a bad disease state. But even if in the next month this is where I’m going to wind up, there’s a chance the month after that, that if I start out healthy and I’m healthy the next month, there’s a chance that I’ll stay healthy or that I’ll get into a pre disease state. And if I’m in a pre-disease state, there’s a chance that I get better again, I stay pre diseased or I get sick. And so we get this kind of tree that kind of expands out and expands out and expands out and gets very, very bushy. And for situations like this where we’re going to make decisions about, should I screen every month. Or should I screen every two months. Or should I screen every year or something like that, the decision tree becomes a very unwieldy mechanism to kind of represent such processes. 

And in such circumstances, then we’re interested in thinking about a model structure that allows us to think about repeated events that can occur throughout an individual’s life. And/or interventions that might be delivered at multiple time points in individuals life with subsequent transitions, let’s say the risk of developing some disease, if I’m screened and treated with the pre disease determined by that that pattern. So for those sorts of circumstances, we’re definitely going to want to think about other modeling structures like a Markov model. 

So what is a Markov model? A Markov model is a mathematical modeling technique derived from matrix algebra that describes the transitions that a cohort of patients or people may make among a set of mutually exclusive and collectively exhaustive health states during a series of short intervals, also called cycles. So a Markov model—what does it mean, Markov? Well, individuals are always in one of a finite number of health States and events are modeled as transitions from one state to another. Time spent in each health state determines our overall expected outcomes. Living longer without disease yields higher life expectancy and potentially quality adjusted life expectancy than perhaps developing disease and hence dying sooner. And during each cycle of the model, individuals may make a transition from one state to another, or they may stay in the state that they are in. 

So when we construct a Markov model, there’s a procedure just like there is for constructing a decision tree. And this involves defining a set of mutual exclusive, and collectively exhaustive health states, determining possible transitions between these health states, which we call state transitions or transition probabilities. And that will be determined by the health states that we use and the disease—the reality of the disease that we’re modeling. And then we’ll determine a clinically and policy relevant or valid cycle length. And I’ll talk about that in a second. 

So the cycle length that typically gets used in a model is, you want it short enough so that there is essentially the risk of having multiple events within one cycle is really small. So if you have a disease that progresses very slowly, maybe you need yearly cycles or something like that. I would say that what’s common in almost all Markov models that you see published these days is to use monthly cycles or shorter, because computing makes it not a problem. And for some applications ICU, emergency department, et cetera, and for certain decisions, hourly, daily kind of cycle lengths may be appropriate. 

So you choose a cycle length, let’s say that in our example we’re going to use a monthly cycle length. Now we define the health states relevant for the disease that we’re considering, so maybe we we’re talking about prevention so we have some people who don’t have the disease at all. They’re healthy and then they’re sick. But obviously in any real disease we’ll have potentially more than one state that describes kind of the progression of the disease, et cetera. The severity of it and what not. Whether it gets symptomatic, how symptomatic it is, et cetera. And then we have dead. 

So these states are mutually exclusive and they’re collectively exhaustive. That means that any person is in one and only one of those states at any given time. We want to define these things based on the actual biology or pathophysiology. And then we’re going to have these Markovian assumptions, which is homogeneity. Which is all individuals in the same state have the same cost, quality of life, and risks of transition. So if I’m in sick, my risk of dying is the same as everybody else who’s in sick. So if we can have some people who are more sick and some people are less sick so their risk of death would be different, we would need two states. More sick and less sick or something like that. That’s what homogeneity applies. 

The other one is memorylessness. So the current state determines your future risk. So if being sick for the third time is relevant then we would need to have states that count up the number of times that people have been sick previously. So you maybe would go healthy to sick back to healthy. But now you need healthy with a history of being sick, that might determine your chance of getting sick again, these sorts of things. So we would extend this set of states if we needed to keep track of history or if we needed to stratify risks, cost, or quality so that we maintain this homogeneity within state assumption and memorylessness assumption. 

For our example, we’re going to use a healthy sick dead model nice and simple. Now we have the relevant transitions. So each arrow represents a transition. The transition represent the proportion of people who transition from one state to the next within a single cycle. The people who do not transition within that cycle remain in the same state. So we have these arrows looping back to the same state, so that way the sum of the probabilities of all the arrows exiting from a state equals one. Every state that’s not dead needs a risk of death. Death is the absorbing state. No health state that I know of protects you perfectly from death, and that’s why you need that. 

And in this particular example, we have people getting healthy, getting sick, and getting healthy again. So you can kind of flow out of sick. If you had a disease that was a chronic disease, once you developed the disease, there’s no chance of becoming healthy again, then you wouldn’t have the arrow flowing from sick to healthy. So depending upon what the disease is, that depends which arrows are the relevant arrow. But it is always the case that from all non-dead health states there is a risk of death. We need to have that and beyond that, everything else depends upon the pathophysiology of the disease that you are modeling. 

Alright, so for each of the allowed transitions, we have some probability. The probability of going from healthy to healthy, meaning to staying healthy. The probability of going from sick to healthy. The probability of going from sick to healthy, et cetera. And this is the probability of from dead to dead. There are no flows out of death so the probability of staying dead if you’re already dead is one. So this represents what we call our transition matrix. Now we have the proportion of people who are in each of these states at some time, and the proportions need to sum to one. And now we do—actually, your computer does something like matrix multiplication to determine the proportion of people in each of these states at the next time step. 

So row times column, each of these elements summed with each of these—multiplied and then summed, and that gives us the proportion healthy. So people who stay healthy, people who go from sick to healthy, and nobody obviously who is from dead to healthy and that gives us the proportion healthy. And we can do that for all the different states. If we look at this vector of the proportion in each of the states at each of the time points and we look at it across all time, we can construct what’s called the model trace. The proportion of the original cohort that’s in each of the states. Over time you can see sort of dead rising, healthy falling and sick sort of rising and falling as people die. 

Two questions to think about. Is the proportion the same thing as the prevalence and as model time age. The answer to these questions for both is no. Model time is not the same thing as age unless we start everybody at age zero. Otherwise you would think about it as model time plus the starting age would give the age of the cohort at any given time. And the prevalence what we’d want to do is divide let’s say we’re thinking about the prevalence of disease. It’s the height of this curve divided by the height of this curve plus the healthy curve. Prevalence is defined as the proportion of the non-dead population that is in some given state or state. So the prevalence of sick is the proportion who are sick, divided by the proportion who are sick or healthy. We ignore the dead. But you can compute from your trace epidemiological relevant concepts like prevalence. 

So here’s the underlying trace. The first three columns are what is coming out of those vectors at each time point. If we take one minus the proportion to our dead, we get the proportion who are not dead. So we could use this as the denominator for computing prevalence. And then stage is just telling me what’s the time step for the cycle we’re at in the model. If we attach health related quality of life weights to each of these states, 0 for dead, 1 for healthy, and let’s say .6 for sick, then we can compute the quality adjusted life years lived as the sum of these weights times the fraction of the population living in each of these states for each of these times. And likewise, if we had the cost of living in each of these states, we could get the costs here. I’m ignoring discounting for the time being—well, for this lecture. But if you were doing these in a standard cost effectiveness analysis, you’d also discount future time back to present value. 

So interventions are going to change our probabilities. If you treat somebody who’s sick, you’re going to maybe move them back to healthy at a faster rate. Or they could change the quality of life. Maybe I give you some treatment that makes your symptoms less bad. It doesn’t change the time that it takes to come back to being healthy, but it does change the quality of life that you live while you’re sick. And certainly treatments carry resource uses which imply costs. But if they also prevent me from getting sick or they shorten the length of time that I’m sick, maybe they also avert some costs as well. 

So in the given example, imagine that we have a screening test that we’re going to use to determine whether we’re going to treat people. And suppose that the screening test is 70 percent sensitive, the probability of identifying somebody who actually has disease as test positive and 100 percent specific in this stylized example. Meaning we don’t get false positive people without disease don’t get called positive on the test. And imagine the treatment is 90 percent effective. So we could get the proportion of people who go from healthy to sick under the intervention as one minus the sensitivity for those who get sick because some people won’t get detected, so they’ll get sick anyway. 

And then also the people who get sick who do get detected but the treatment is ineffective 1 minus 90 percent, that will be our flow from healthy to sick. And we can do the same thing for all of these other ones. And so instead of having these probabilities in our matrix for our intervention, we replaced them with these other equations or the probabilities that are implied under the intervention. And then so if this was our natural history model, the one without this sort of screening, these would be the values that we put in with screening and in my numerical example, that’s what those would be. So then we could compute the proportion who are, let’s say alive at each time point without intervention. 

And then we could run the model again. This is essentially coming out of the trace if you will that final column, not dead. And then we could do the same thing with intervention in the increase in heights of each of these bars and each of these time points is the increase in the life years and the quality adjusted life years or whatever it is, and that difference in the area between kind of the curve described by blue and the curve described by light green, that difference in height is going to be the gain in life expectancy or quality adjusted life expectancy. And we can use the model to compute that for us. 

We can draw our model in sort of a way that looks similar to a decision tree. So we have this special node called the Markov node, which I’m showing you here. And off of the Markov node are the health states that we have in our model. And off of those health states are a series of chance notes. You can have something complicated here, but they determine the probability of going to each of the different states within one cycle. So the transitions. So healthy back to healthy, healthy goes to sick, healthy goes to dead, et cetera. Dead stays dead. Sick, going back to healthy. And then we could encode—I’m just now showing you just this one branch. I’m going to kind of zoom in on this and show you what our intervention kind of looks like. 

So if I’m healthy, I will either stay healthy, get sick or die. If I get sick and I test positive, the sensitivity and the treatment is effective, so 70 percent, 90 percent then I go healthy. Whereas if I didn’t have this screening, I would have gotten sick. And for people who get sick if they test negative, then they get sick. And if for people who test positive, but the treatment was ineffective, they also still get sick. So you can imagine that same sort of encoding done for the sick branch. And it won’t change for the dead branch because dead people stay dead and we don’t intervene on them. And it looks like that for the sick branch as well. And that’s essentially our model with the intervention encoded in it. So that’s what we have on sort of building Markov models and encoding interventions into Markov models. 

The standard way that we evaluate Markov models as I sort of said is, you have this vector of proportions of a population. I haven’t really decided say anything about the size of that population and those proportions flow between the health states over time, deterministically. So another way that you can sort of evaluate the Markov model or extended Markov model is by simulating lots of individuals in a stochastic way. So we have this Markov cohort model, the matrix version. It’s a smooth model. We essentially have an infinite or arbitrarily large population, and they flow deterministically over time. We can use that same structure to simulate many individuals. 

The matrix entries now become the probabilities of each individual changing state in each time. So it could be the case that one individual is healthy, get sick, stay sick, gets healthy again, gets sick again, and dies. A different individual, same probabilities just by flipping coins, chance alone might be healthy, stay healthy, get sick, get healthy again, stay healthy again, and die. And a very unlucky individual might go from healthy to dead the first cycle, and obviously they will remain dead. 

And by simulating many individuals, we get this sort of—the range of paths that individuals follow and more individuals will follow some paths versus others based upon the probabilities in our matrix. And by counting all those individuals up, we can do something like we did with our trace matrix. We’ll get counts of individuals we simulated who are in each of these states at each of these times, and then divided by the total number of individuals we started with. And that’s the proportion of our population simulated with this micro simulation in each of these states at each of these times, and then we can compute costs and qualities just like we did before. 

So a micro simulation essentially is going to simulate many of these individuals based upon the probabilities that are in that transition matrix, and we’ll calculate these proportions. And as we simulate more individuals, the proportions will get arbitrarily close to what we would have gotten with this cohort model. So if you want to think about how many people you need to simulate and all this other kind of stuff there’s a great chapter in Michael Drummond’s book on economic evaluation, written by Karen Kuntz and Mill Weinstein, which talk about these sorts of issues. That’s an advanced topic, but something to know about. 

So why would you ever do a micro simulation? It just seems you have to simulate all these individuals, but it takes longer to simulate. It’s more complicated. Fewer people are familiar with it. And then there’s this sort of first order stochastic noise because I’m growing pseudo random numbers and flipping coins. So why would you want to do that? And you might have to be like really a lot of people, especially if events are rare like cancer incidents or something like that. So the answer is, because of what can happen with the Markov model because of the Markovian assumptions, the memorylessness and the homogeneity assumptions. 

So suppose you wanted a Markov model of a quite simple disease, healthy, sick, dead. But I want my probabilities of transitioning to depend upon my sex. Male, female let’s say. Smoking status. Current, former, never. BMI, underweight, normal weight, overweight, obese. And hypertension, normal hypertension, pre hypertension, hypertension one, hypertension two for example. So all of a sudden I have—if I have to stratify both healthy and sick by all of these things, I’m going to have a lot of states. One hundred and ninety-two states. So I now have a transition matrix that’s 192 rows by 192 columns. That’s 10, 12,000 probabilities that I need to have. I mean, they’ll have some relationship to each other, but that’s big. 

And now let’s imagine that we need to stratify also, not only by our current status in terms of these risk factors, but also by whether I’ve ever been hypertensive in the past. Whether I’d ever been obese, by whether I’d ever been a smoker, and maybe even if I’m thinking also about interventions by whether I’d ever been treated previously or not. And all of a sudden you have an incredibly large number of states, an incredibly large matrix. And at that point, really the values in that matrix essentially are going to come from risk equations where these various things are related to each other. 

And instead of trying to multiply 10,000 by 10,000 element matrices together and doing crazy things like that, we’re going to think about a micro simulation, where we track the characteristics of individuals in a nice little simple vector that basically goes up linearly with the number of different things that we’re tracking. As opposed to kind of this crazy state explosion growth and we’ll simulate them and their risks will depend in some sort of way, just like in kind of in clinical prediction on some combination of those things. And so this slide basically says that simulate one individual, they have some set of attributes. They have hypertension, they’re overweight, they’re smoking, whatever, and their probability of going from healthy to sick is conditional upon these sorts of things. 

And maybe we then also have a set of functions that, what’s your likelihood of being obese given your sex and your BMI, your current BMI, or your current overweight weight status. And you can imagine that these functions are all estimated with logistic regressions or some other risk prediction kind of thing. And now the model is using those to get the probabilities and then predict what happens to the individual condition upon those probabilities. It actually turns out at some size of the state space, it’s in certain ways more efficient and certainly much more interpretable to run a micro simulation than to run an extremely stratified in other ways complex Markov cohort model. 

Alright, that’s the main content that I have for today. I’m going to say last couple of things and then open it up for questions that have maybe either flowed through during the time or other questions that people have. So sage advice I have heard. Know what information your consumers need. So if you’re supporting decisions, you kind of really want to understand what are the outcomes that your model should produce that are relevant to the decision maker. Pick a model that is as simple as possible, but no simpler. 

People need to understand models or they want to understand models. They tend to have distrust for black boxes. On the other hand, if you overly simplify, it can lead you to miss estimate important quantities that you need. And just like any research modeling or not, your model has limits and assumptions. Be explicit about them. There’s nothing shameful about that. But know the kinds of things that your model treats well and know the kind of things that your model is maybe not suited to answer. And sort of stick to questions that your model is suited for answering. 

Summary of what we’ve talked about today in medical decision analysis, we want to clearly define the decision alternatives, the events that are relevant, and the outcomes and their values. Decision analysis is a formal method to combine the evidence to do that. It can be used to prioritize information acquisition. So as you start doing that if you realize there are some important number or quantity that you would need for the analysis, but there’s no evidence on it, that maybe is a good reason to go and to do some further prospective analysis or primary analysis yourself. 

And it can help healthcare providers and other clinical decision makers make medical decisions under uncertainty focused on maximizing expected outcomes that patients and the system care about. Here are some sources for you. Obviously, you’re going to get the slides and there are many other sources as well, but these are sort of classic sources in this literature. Thank you very much, and I look forward to I guess about seven or eight minutes of questions if there are any.

Moderator:	Thanks so much, Jeremy. That was fantastic. We do have a few questions that came in. One about the decision tree portion. So someone was asking for the decision tree that you showed, why would you have surgery or medical management if the disease is absent?

Dr. Fiebert:	So first to say, it’s a super stylized example. But there are cases where you don’t necessarily have some great test and so people treat empirically. And not everybody who’s treated empirically actually has the disease. So yeah. So that’s sort of to sort of illustrate that point. But yes, what you might really want to do is have another option which is called, diagnostic pathway that involves a bunch of testing prior to initiating things.

Moderator:	Thanks. Another question. Is first order Monte Carl, the same as simple micro simulation.

Dr. Fiebert:	No. So well, they’re related. So there’s two types of—there’s one type of uncertainty which is relevant both for Markov cohort models as I described them and for micro simulations. That’s my uncertainty about what let’s say the population average parameter is. So for example, what is the risk that if I have a disease, the disease will get worse in the next month? Average across some set of patients. Well, if I measure that in a longitudinal study, that average risk right is uncertain unless I have a 100 people in that study and I observed 10 events, so in that time period, so that’s a 10 percent risk. But it’s 10 out of 100. There’s some uncertainty bound on what that best estimate of my risk is. That’s second order uncertainty. That’s relevant for both those models. 

First order uncertainty is, even if I knew that probability of getting worse like that ten percent that I just said, there’s some chance that I get sick or I don’t. So if I took the same set of—if I took 20 people and I exposed them all to a 10 percent risk, it’s not always the case that two people out of the 20, 10 percent get sick. Sometimes just because of stochastic chance, four people out of 20 get sick and sometimes 0 out of 20 get sick. And the that second type of uncertainty the first order Monte Carlo noise, stochastic noise only is dealt with or only is captured in the micro simulation. In other words, the Markov cohort simulation is a model of the mean process. And the micro simulation is a model not only of the mean process, but also of—it actually model is some sort of notion if that captures the variance that might occur because we’re considering decision in a finite population.

Moderator:	Great, thanks. That’s a great answer. Another question about decision analysis software any…

Dr. Fiebert:	Yeah. So for a while, many people used sort of a software that you could essentially draw these sorts of trees, and then it would kind of run the analysis for you. And one version of that is something called, _____ [00:55:29]. So I have no relationship to any of these software, whatever. _____ [00:55:38]. You have to pay for that. There’s a licensing, etcetera. There is another version of kind of like you draw it and then you run your model called, Amua. A-M-U-A. That is freely distributed and it’s open source I think software. 

What has happened more recently, let’s say in the last five years or so, and there’s some very nice tutorial papers on doing this and packages that exist is there are packages for building these sorts of models in the R programming language. And R is free. The packages are free and in some sense, you have more flexibility. You can do more advanced things. There are other advantages to using R. There’s tutorials, a series. There’s a group called the Darth Group. D-A-R-T-H that have basically done—it’s like decision analysis in R something, or rather. 

And they have a number of tutorial papers that they’ve published. They have a website doing micro simulations, doing Markov cohort, cost effectiveness analysis, etcetera. And so with my students, I typically have them using R or using Amua. But you can also use—I mean, I’ve built models in Python And I’ve built models in C++ and I’ve built models in Excel. But those are sort of the range I would say of what people--MATLAB I’ve used as well. I would say modally, many models are using free age R and Amua in terms of what you see getting published in general in the published literature.

Moderator:	That’s a great answer and I think it helps with another one somebody asked about a VA specific question about software that might be in Vinci. So I don’t think—I haven’t seen trees. Maybe people can correct me if I’m wrong, but we do have things like R, so it sounds like there’s packages people could use within the Vinci environment for that. And I think that is all for now. I think it also brings us almost to the top of the hour. Thank you so much. This has been really informative. And I think if people have follow up questions, I think looks like they can contact you at your e-mail here.

Dr. Fiebert:	Sure. So good luck and it was a pleasure not actually seeing you live but seeing you online.

Moderator:	Thanks so much.

Dr. Fiebert:	Bye-bye.

Rob:	Thanks Jeremy. Attendees, when I close the webinar momentarily, a short survey will pop up. Please do take a few moments to provide answers. Thanks again.
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