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Rob:	Mark, Happy Valentine's day. Can I turn things over to you?

Mark Bounthavong:	Happy Valentine's day. Yes, feel free to turn over things to me.

Rob:	Thank you.

Mark Bounthavong:	Alright, thanks, Rob, for the intro and getting us started. Welcome everyone. My name is Mark. I'm going to be your presenter today on Markov models for cost effectiveness analysis. This is a two part, what I would like to call a workshop. And what we're going to do is learn, the features of the Markov model. But more importantly, for the second part of this workshop, we're going to learn how to create Markov models or build them or construct them using office space tools like Excel. Today, I'm going to go over some of the background and the features and some of the things you'll need, particularly the tools to build these Markov models and the next time around, which I believe will be in two weeks, we'll go over the actual construction of the models using Excel. Just to temper your expectation, we won't be building it today. We'll introduce it to you today, but in the next couple of weeks, we're going to learn how to build them together.

Alright, so these are my disclaimers and disclosures. As an employee of the VA, whatever opinions I have or present here are are my own and not those of the government. I do have a link, a page where I post a lot of these documents so if you click on the link here, hopefully you have the presentation. If not, we'll get that to you. You can download all the files that I'll be talking about today. The one thing I want to mention when you're downloading the Excel file for our next part, which will be in a couple of weeks, make sure you download the raw file. There's a couple of buttons here. You can either right click on the raw icon or button and save the link on your computer. Or you can just click on the download button to the right of that.

It's important that you download the raw file, rather than the actual file that's on there, because the actual file may get corrupt during the download process while the raw file will maintain the integrity of Excel file. That's just a little tip there when you're downloading things from GitHub. Alright, here's the outline for today.

I'm going to talk about some of the limitations of a decision tree. And one of my understanding is that many of you have already been introduced or have some some knowledge of what decision trees are, but I'll give a very brief introduction before I move on to the Markov models. Then I'll talk about the description of the Markov model, what it looks like, how do we draw one, then I'll go into talking about its features such as the simulations we do, and then detail what the Markov chain is versus the Markov process, and then talk about discounting and inflation. Because one of the things that's really great about a Markov model is the ability to do lifetime horizons for your patient population or your cohort. And as you're doing things long term, we'll have to discount the costs and benefits associated with the intervention we're studying. So I'll talk about this kind of inflation a few more sides.

Alright, decision trees are great because they provide a linear pathway for a patient or cohort to experience some kind of disease. Usually these are useful for short courses or disease pathways or length are relatively short, such as infectious disease models, for example. But, but they can't really capture long term diseases where you can have multiple branches that can really create complexity to decision tree. It's not that you can't do it, it's just that it's much more complex and complicated.

Another limitation of decision trees is that you don't really have the ability to re-enter any nodes in a decision tree. For those of you unfamiliar with decision trees, I'll show you a figure in just a second. We have nodes that go from left to right. And some of these nodes will branch off into different pathways that a patient can potentially take. And these pathways can branch off into infinity and that does not allow you to re-enter at a previous pathway. Markov models are great because it allows you to do that. Whereas in decision trees, you're unable to do that. And I'll show you an illustration of that in just a minute.

And the other thing is that Markov models are really easy to build. Decision trees are really easy to build if they're relatively short in terms of the time horizon. But also, in terms of the different types of pathways a patient can experience. It's harder to make multiple pathways with decision trees, but with Markov models, you have the ability to have multiple pathways without the added complexity of a decision tree.

So, let me show you this as an illustration. Here's an example of a decision tree, a very simple decision tree. We have some kind of example disease, which is represented by square node. This is the decision pathway. And this is the point in which the decision maker will make a decision. Am I going to treat the patient with treatment A or treatment B? Let's suppose that the decision maker treats the patient with treatment A. Now, the green circle represents the probability or chance node so there's a probability the patient can remain ill or become well, or not ill.

And if they followed, say, the ill branch, it leads to another probability node, and they can either live or die. And the triangle represents the terminal nodes. This is where the decision tree ends. So, taken all together, we see that there are multiple branches for treatment A, based on these probability nodes. And this is just a simple, short review of what a decision tree is.

Now, let's try to expand this. Let's assume that if they live, they have the probability of returning back to being ill or being not ill. And as you can see, just by this added probability node for those that survive, you add more complexity to the decision tree. So, there’s multiple branches. Now, this cycle can repeat itself over and over again if we wanted it to. And we can use this to our advantage. For example, let's say we wanted to re-enter the model at a previous node. So, in this case, a patient who gets treatment A, goes into the illness branch, they survive, and then they return to the illness branch.

Or if they go into the no illness branch, they can return to the no illness node. And as you can see, we can re-enter the decision tree from different points at the branches. This is an important feature that the decision tree doesn't allow us to do. Mathematically, it's very hard to do this. And if you're using Excel, for example, to construct these decision trees, this just adds more to the complexity of the decision tree. So, to avoid this, we can use what we call our Markov models.

And when we think about Markov models, we think about things in terms of states. Rather than thinking of things in terms of branches or terminal nodes, we think of things in terms of states or disease states or what are also called transition states. For example, if you are not ill, I'll call them well, and we can return to the well state, or we can go to the illness state, or we can die. And we can use these states to help define the pathways that patients can take. 

For example, if you're, if you are in the illness state, you can either remain in the illness state, transition to the well state, or the no illness state, or transition to the death state. And if you're in the death state, you can't really transition back to well or illness. You just remain in the death state. Let's illustrate this in terms of these disease states I mentioned. Here's what the Markov model would look like if we were to replace the decision tree with these disease states.

As you can see, we can actually map through the different states a patient can go through. For example, in the well state, they can go to the illness state, which is indicated by the right black arrow. They can remain in the well state, which is represented by the re-entry arrow, or they can go to the dead state.

Now, one of the other great things about Markov models is that we can assign costs and benefits or payoffs to each of the different states. So, for example, if you're in the well state, how much expenditures would the patient accrue because of their treatment intervention, order disease, and what kind of benefits are they going to get if they're in the wellness state?

Similarly, with the illness state, we can assign costs to the illness state. What kind of costs will be needed for a patient who's ill and what kind of benefits are they going to have. When we think about benefits, what are the payoffs, I'm thinking in terms of more health state utilities, like quality of life, for example. But we can look at other benefits as well. And this is really nice because if we assign costs and benefits to these states, it makes it very easy to organize our models, particularly when it comes to building these in Excel. 

Just to give you a little bit more background about Markov models. These are what I call transition state or state transition models, because we're looking in terms of states rather than branches or nodes. And it's really nice because when we look at the decision trees, we can see how complex they can get when we add more branches and more nodes. In essence, it can go into infinity, but with a Markov model, we can actually have re-entry points and this is an advantage because now we can model chronic diseases or diseases that have very long time horizons.

And as we think about modeling these diseases with long time horizons, we can try to simplify different types of progress in a disease. Whenever someone is healthy, there's always some probability they'll get sick. And if we're studying something like diabetes, for example, we can look at the different stages of diabetes, like pre-diabetes. And is it mild, is a moderate, is a severe, is it uncontrolled. Is it diabetes with complications? What type of complications are they are they? As you can think about this from a clinical perspective, these disease states or transition states make a lot of sense, particularly when it comes to chronic diseases, because we go to different stages.

Another advantage is that we can add costs and benefits that I mentioned to each state. As we think about these long term time horizon, we can start thinking about discounting, and discounting is really used to help the decision maker, today, make decisions using present values.

Another thing about the Markov model we have to be really careful, though, is that individual subjects can only be in one state at any one cycle. This may not make sense right now, but as I go through the features of the model, hopefully, this will make more sense because we're going to learn about terms regarding the Markov model, such as iterations, cycles, time horizon. And I'll talk more about what these terms mean.

Okay, let's return back to our simple Markov model, which includes the three states that we had initially started with. We have the well state or no illness state. We have the illness state, and we have the dead state. Now, we have names for these, and the most important one is probably the death state. This is what we call the absorbing state, and the reason why it's called the absorbing state is because once you enter this transition state, you can't leave. It doesn't make sense for someone who dies to be resurrected and then become well again. So, once you enter the absorbing state, you just stay there.

But if you're in a well state, there's lots of different pathways one can take. For example, if you're in a well state, you can be ill or you can be well, we call that asymptomatic state. Basically, this is a state where you don't have the disease. And if you experience illness, we call this the disease state. Now, for some of you, when you build your Markov model, your patients may not have an asymptomatic state. That's fine. They'll just have a disease that's mild. It's still the same kind of thought. We have a starting point and we have an end point.

Alright, let's try to put all of this together. When we think about the Markov model, we want to make sure we take into account all of the different transition probabilities that can occur. For example, if we look at the well state, the no illness state, big blue circle to the left, where are all the different potential transition probabilities that can occur. So, I label all of these for us, so we can have a person who's in the well state. And then in the next cycle, they can remain in the well state. That's what that re-entry arrow means. And the TP1 simply means transition probability one. I like to tag these with labels so it's much easier for me to do the calculations later.

Then, if you're in a well state, or if you have an individual in the well state, they can transition to the illness state, which is represented by TP2, or transition probability two. And if you're in a well state, so you can also transition potentially to the dead state, which is represented by TP3. And based on the laws of probability, or the rules of probability, all the probabilities of the well state need to add to a 100%. This is always a good check whenever you're building these models. Whenever you have multiple transition states you want to ensure that all the arrows that are leaving are all going to sum up to a 100%.

Similarly, if we look at the illness state, we look at this as the source of where the patients are going to leave or remain. So if you're an illness state, you can transition to the illness state, which is represented by TP4. it just basically is a re-entry into the illness state. You can transition backwards to the well state, which is represented by TP5. Or you can transition to death, which is represented by TP6. And again, summing up all these transition probabilities should be equal to one. And, of course, if you're in a death state, which is represented by the re-entry arrow at TP7, it's going to be a 100% because this is the absorbing state. Once you enter the dead state, you cannot leave.

Alright, a little trick with probability theory is this great advantage here. Because all of these transition probabilities should be based on some evidence. There are times where we could actually leverage this to help us with our data gathering process. So, for example, if it's very difficult to get data for the re-entry transition probability, one can simply take the difference of the transition probabilities from the well to illness state and well to death state to infer what the well to well transition probability would be. So, in this case, because of the rules of probability, you would take one minus TP2 minus TP3 and that would give you TP1. And this is nice because it still maintains or adheres to the rules of probability. At the same time, it also reduces the burden of gathering more data to find out what TP1 is.

Now, as a researcher, we obviously want all the data as possible. So, usually, when you're in these types of circumstances is really a decision point for you. Whether or not you want to use the strongest data you have for the different probabilities, for the transition state, and then figure out which one is the weakest in terms of the least evidence and use that as the balance that you'll need to cover with the rules of probability.

Alright, so let's take a look at this again from a different point of view. So, I showed you what it looks like when we think about things moving from one state to another state. We can actually summarize this in what I call a Markov transition matrix. And if you ever build this in R, or some kind of computational software other than Excel, having a good understanding of matrices will help you with your calculations. But I won't go into too much details about those. If you're ever interested about that, maybe one day we can do a workshop on that. But I'm going to focus more on how to build these in Excel.

But I like having these transition matrices because it helps me keep track of where all the transitions are. And it's also a really nice way of presenting it in a paper. Here we have a transition matrix, it's a two by two matrix. It reads going from row to column. So, here we have the well state going to the well state, that's TP1. The well state going to the illness state, that's TP2. The well state going to the dead state, that's TP3. Okay, so we're reading from rows to columns. And it's just a nice way to organize all of your numbers, especially if you're trying to present this in a paper.

Alright, let's talk about some features. Let's get into the lingo here of what a Markov model is doing. I mentioned terms like cycles and iteration, time horizon. What do those things mean? So, let's take a look at this three-state model that we are constructing slowly. And we think about the time horizon as the time of interest that we want to study the disease course. So, for chronic diseases, a lot of us end up using what we call a lifetime horizon. We run the model over the lifetime of the cohort, however long that should be. And each time we think about running the model, we think of running the models in terms of cycles.

Here's an example where we have a time horizon. And I partitioned it into eight cycles. Now, let's say the time horizon was eight years. Then we can make one cycle one year. It's really up to you what kind of partition or bins you want time to be in, in terms of intervals. But I like to use cycles that make sense. So, for diseases where you see rapid changes that occur every three months or every six months, then you want to make sure your cycle encapsulates that.

For example, let's say this was a lifetime horizon. And we had a disease like diabetes. Diabetes, you would measure the hemoglobin A1c, maybe every three to six months, because that's how long it takes for the heme to recycle the oxygen. And if you're getting some kind of glycemic control medication, that's probably a reasonable cycle, three to six months over a lifetime.

When we think about cycle, think of this as an engine. We're going to run the engine for one cycle or one rotation, and we're going to see what happens afterwards. And then we're going to run it for another rotation, and then we're going to see what happens. So, here we have eight cycles or eight rotation across a time horizon. And each time we run a cycle, we call that an iteration. Every iteration considered one cycle and X number of iterations, in total, represents the time horizon.

Alright, so let's talk about how we run the engine that I kind of colloquially referred to. So, there are two ways to do this. There's the Markov chain, which is also called a static model. This is where the transitions don't change over time. And we have the Markov process. This is a dynamic model where the transition probabilities can change across time. So, when we think about the Markov chain, these transition probabilities remain static. For example, the transition probability one is 90% in cycle one, then the transition probability in cycle two will still be 90%. This is convenient because we don't have to worry about transition probabilities changing, which will force us to recalculate all the transition probabilities of the state that we're in. But it also has limitations because in real life, we know that transition probabilities for survival, for example, changes as the subject gets older.

So, this is not a realistic representation of the real world. But it's sort of a nice way to just run a model to kind of get the feel for how this works. When we do the actual construction in a couple of weeks, we're going to assume a static transition just to get you familiar with the calculations in Excel so you can get a little more confident. And maybe one day in the future, we can have another workshop and we can talk about how do we apply the changing transition probabilities over time.

I see a question in the chat. Let's see. I'll pause right now to answer any questions.

Jean:	The question is, are there any special considerations for when you momentarily lose track of a subject's state, like during temporary lapse in insurance coverage? Would that just be another state in the model? And if they don't return, could that be a second absorbing state?

Mark Bounthavong:	Yes, great question. With the model, you can build different absorbing states, like you suggested. You can actually change the assumptions of the model if you need to. So, we can have a different transition pathways for the patients that have different conditions. So, there is lots of flexibility with the Markov model. I'm using a three-state model for simplicity. But let's say if a subject loses insurance, like say our hypothetical cohort begins the model with all of them with insurance. And over time, maybe say after a year or two, they lose insurance. Some of them, not all of them, but some of them lose insurance. Well, you can have a different transition state that you can go to.

It would emulate what you're doing. But the only difference is now in this new transition state, these patients don't have insurance and they're paying out of pocket. So, that's the cost they'll accrue. So, you can definitely do that. That's one way of doing it. There are other ways, like tunnel states, for example, where you can force patients to go down a different tunnel state. And I'll talk about that a little bit. And there's also multiple absorbing states if you want. Like, say you want to exclude them from future analysis, maybe you have another absorbing state where you can actually exclude them. They're not dead, but they're just excluded from the model. Any other questions?

Jean:	There's actually another question. Do the time bin cycles have to be the same length or can they be different?

Mark Bounthavong:	Great question. They don't have to be the same length. But for simplicity, we usually assume they are. But there are more complicated models, such as, we call them state dynamic transition models or dynamic transition models or agent-based modeling, where the cycles vary considerably. And you can run that through some kind of distribution that you simulate. But for simplicity, we're not going to assume that. But it's very possible to do that. They're a little more complicated. And they're very useful for infectious disease models, especially with epidemics, for example.

So, a lot of the recent COVID models are published trying to predict survival. They all use these types of dynamic transition models or agent-based modeling, but they actually vary the cycles. So, good question. Alright. Any more questions, Jean?

Jean:	No, that's it for now. But if anyone else has any other questions, feel free to type it into the Q&A panel.

Mark Bounthavong:	I do want to add one more thing to the cycle length. I don't talk about it in this presentation, but there are ways to do what we call corrections in the cycle, like half-cycle corrections or Simpson corrections. These are corrections we do where if you don't think that the accumulated cost or the benefits would last the entire cycle, like, say, maybe it'll only last partway through, then you can run some kind of adjustments. But they're usually uniform. They're not dynamic. They're just like a correction we do. Very similar to like a Bonferroni correction, if you're familiar with those.

The dynamic transitions, this is where the transition probabilities can change from cycle to cycle. For example, let's say the transition probability is 90% in cycle one. This can change to 85% in cycle two. And this is very common when we try to model survival. Because as a cohort gets older, their probability of survival changes over time. So, this is where the dynamic transitions come in. And this is more of a Markov process.

For the construction of the model, we won't talk about this, but it's something that you can actually build in very easily. If I have time, maybe I'll talk about that in a couple of ways. But if not, then we could always try to throw in a third part to do things like that later in the future. Let's see. Moving on.

The cohort versus micro-submission. Okay, this is really important because so far, we talked about the features of the Markov model, different states. We talked about the dynamic process, the Markov chain, and then we talked about the process. Now, let's talk about how we run the simulations. There are a couple of ways to do this. In the constructed model, we're going to do in a couple of weeks, we're going to do the cohort simulation. But the individual simulation is also rather interesting and probably useful for some of us who are trying to learn more about the population, individual experience of having some kind of disease.

So, in the cohort simulation, we think about modeling an entire cohort of patients at the same time. So, if you think of a giant Pachinko machine, you just drop a bunch of balls at the top of the machine, you kind of see where each of the balls fall in the different bins at the end. Whereas in an individual micro-simulation, what we call a Monte Carlo simulation, or a first-order Monte Carlo simulation, we're just dropping one ball at a time at the top of the Pachinko machine. We're seeing where they all fall.

Okay, so let me illustrate this for you. It's probably easier to see this for me to explain it in words. So, let's talk about the cohort simulation first. Okay, let's think about this from a cohort simulation. We have a bunch of people that enter the well state first. And over time, let's say the first cycle, the first iteration, some patients remain in the well state and some patients move to the illness state. And then in cycle two, some patients die, some patients remain in the well state, and some patients remain in the illness state.

Now, there was a problem here. This is a Markovian assumption. This is a memoryless feature with the core simulation, meaning that if I look at this patient who died, I don't know if they came from the well state or the illness state because I don't have any memory of where that patient came from. And this is the problem with the core simulation approach. If you're interested in where they came from, then this is going to be a problem. But for many economic evaluations, we're not too concerned with this. We just want to know where everyone ends up at the end of the model cycles. But if you're interested in learning more about the individual pathways of each patient, this is where the micro simulation comes in.

Before I talk about that, I kind of want to talk about tunnel states for a little bit. Now, with a cohort simulation, we're kind of leading things up to randomness or probability of where they end up, right? Like a giant Pachinko machine. But suppose you wanted to force patients down a certain pathway, or a cohort down a pathway, then you can do what we call tunnel states. In these tunnel states, we just force patients to go down certain pathways if you wanted to do that. So I just wanted to add that for some modelers if you wanted to build that into your model.

Now, it may not be necessary to have tunnel states, but sometimes you want to have it. For example, let's say there was a disease course where if you have diabetes, right? Let's say you start off being well, you have pre-diabetes, and then you have diabetes, it's very rare for someone to go from diabetes back to pre-diabetes. I mean, there are cases of that, but it's really, really rare. So to prevent something like that from happening, you can have a forced tunnel state where they actually have to go through the process at certain lengths of time that you define a priority.

Alright, for microsimulation, this is what we call first-order Monte Carlo simulation. This is where we get to look at the individual experience through each of the different states. So here, we have one patient, not a cohort, but one patient that we cycle through. So here, this patient goes through the well state to the well state in cycle one, and then in cycle two, they go to the illness state. That's one person.

And we do another simulation with just one person, and we look at where they end up. So in the first cycle, they go to illness, and then from the first cycle to the second cycle, they go to death. There's some advantages to doing this. One of the best advantages, or probably the biggest advantage, is that you get to know where everyone is at a particular cycle. So you get a history of where they've been. But for those who are modeling sort of like a cohort experience or variability, this allows you to generate things like the mean cost and the variance around the means. They're very useful if you're interested in those elements.

When you do cohort simulation, you don't have the ability to get the variance around some of those means. Whereas in microsimulations, you do, because you're actually modeling the individual experience. So that allows you to sum things up and to run descriptive analysis on them. One thing I do want to mention, microsimulations are much more computationally intensive. So if you're running this, and if you're running some other sensitivity analysis, this can take hours, maybe even days to run. This is why cohort simulations are a little bit more preferred, because they can run in several seconds, or maybe even in a couple hours. Whereas in microsimulations, these can last from many hours to many days to run.

Alright, so I wanted to just pause and see if there are any questions from the audience. We want to estimate transition probabilities and discounting.

Jean:	Any questions right now? Yes, if anyone has any questions, yeah, feel free to type them in.

Mark Bounthavong:	Okay, great. Transition probabilities, I talked about transition probabilities in the Markov model. But where do these come from? How do we get them? You may be tempted to get a paper that has a probability of death in three years. And if you're running a six-month cycle, you may be tempted to think okay, how many six-month intervals are in three years? And then you might be tempted to divide the probability of death in three years by that number, right? I'm going to show you how that's a bad idea, because that doesn't really work with transition probabilities. We're going to have to do some conversions to get to the right probability for a six-month cycle. So let's go through some examples.

Before we do, let's talk about some terms here. So we think about rates and probability. So rates, instantaneous likelihood of transition at any point in time. This is usually represented by some number of events per some unit of time. In this case, five events per 100 years. Probability, this is when we think about proportions of the cohort that experiences some kind of event. So in this case, how many patients died in a three-year study.

Now, for Markov model, we're interested in transition probabilities. But we're interested in transition probabilities for the cycle length. This is where things get important, because when we read papers, a lot of times we don't get that. We get the probability of some event occurring over some follow-up period. So how do we convert that to transition probabilities? I'm going to show you how easy it is to do, but you just have to remember to do this. So these are the two formulas you're going to have to know. We're going to have to know the formula for rate, and we're going to have to know the formula for probability.

But if you look, you can see that probability is part of the rate equation, and the rate is part of the probability equation. Let's talk about how we can use these to calculate the transition probabilities. So here's an example. Let's say that we have a five-year probability of achieving a cure, and that's 90%. What is the one-year probability? You may be tempted to take 90% divided by 5 to calculate 18% annual rate or the annual probability, which is incorrect. You would actually have to do this conversion. So I punched some numbers here for you. So the first row represents the sequence of how you're supposed to do this, and the second row represents the actual computation. So we have the probability of five years is 90%. In order to get the rate, we look at the negative log of one minus 0.9 divided by 5. That's the number of years that we're looking at. And that gives us a new rate of 0.46. We take the 0.46, and we input it into the R symbol and we change the time from 5 to one year.

So we just get the probability of one year is equal to one minus the exponential of negative rate times the one year. So this will give us the adjusted one-year probability for the transition probability. So we're basically getting the 5-year probability and converting it to a one-year probability.

So now the one-year probability is 37% rather than 18%. And if we were to look at this, we can actually run this function. Just check ourselves. The blue line is the correct probability at one year. The orange line is the incorrect probability at one year. And if you were to use the 18%, you can see how you would underestimate the 5-year probability, which should be 90%. But if you had used a corrected adjusted rate to calculate the one-year probability, you can see over time that 5-year probability would match the 90% that we got from the hypothetical paper.

But this is just demonstrating how it's important to make sure you do the transition or the conversion correctly to get from some probability you get in the paper to the actual transition probability you need for the cycle in your model. There are some functions in R that allows you to do this, but since we're working in Excel, it's good practice to do this by hand and make sure you're doing it correctly.

Jean:	There is a question here. I don't know if you want to answer it now or later. It's asking if you could talk about the differences between cohort and individual simulations again.

Mark Bounthavong:	Yes, I'm not going to spend too much time on that, but I'll try to summarize it quickly. So for a cohort simulation, you're talking about modeling a hypothetical group of people at the same time. Whereas an individual simulation, you're running one person at a time. The advantage with the individual simulation is you get to know where they are every cycle. So you get that ability to know the history of that patient in the disease course. Whereas in a cohort simulation, you have the memoryless feature, so you don't know where they were prior to the cycle before. Hopefully that answers the question. Any other questions, Jean?

Jean:	Yes, there is a question about, wouldn't the probability estimation for the cycle be dependent on the generating process? It seems like in the example you gave, you assumed an exponential distribution.

Mark Bounthavong:	Yes. That generally comes from survival analysis, exponential. There's a kind of understanding that there might be some decay or some non-linear trend. So you can use other functions. This is the one that's commonly used in economic evaluations for cost effectiveness analysis. But you definitely use other ones if there's a justification for those. I just use this as a simple example for conversions.

Jean:	Okay, great thank you. And there's another question. How do the transition probabilities needed change between a cohort and an individual simulation?

Mark Bounthavong:	Good question. It doesn't. You can use the same ones. It's the only difference is that you just get a little history of the patient individual versus the cohort you don't. But you can use the same ones.

Jean:	Okay, great. And that's it. Oh, sorry. Wait, there's one additional question. Can the transition probabilities be estimated from historical data or training data?

Mark Bounthavong:	You can use both. As an investigator, you have the privilege and the luxury of choosing and justifying which one you want to use. I tend to use historical data because it's usually based on some kind of study. But if you have training data, for example, there are no studies and you have to get it from a simulation, that's fine too. But you just have to justify why. And if you have both, you can run a sensitivity analysis to see which one, if they give different results.

Jean:	Okay, great. There's another question. I don't know if you want to continue or you want to take another question right now.

Mark Bounthavong:	Yes, I'll take another one.

Jean:	Okay. This one asks, can you calculate your own transition probability if you have longitudinal data for disease states over time? And would it be static or dynamic?

Mark Bounthavong:	Yes, if you have your own data and you have longitudinal data, depending on the data itself, it could be static. But my guess is it's going to probably be dynamic. So you can actually hard code that in every cycle. Like, say, from cycle one to three, it's going to be this probability. From cycle four to six, it's going to be this probability. So you can actually hard code those things in.

Jean:	Okay, great. Yes, that's it for now for all the questions.

Mark Bounthavong:	Great questions. I'm glad people are asking because these are the questions I asked when I first took these courses. Okay, so I'm going to transition to discounting inflation because this is something that I think gets forgotten when we're building these models. So when we construct our model in a couple of weeks, I'm going to show you how to incorporate discounting into the models. But for now, I'm going to kind of show you some of the equations that we use.

Just to kind of give you a little bit of background with the difference between inflation and discounting is when we're building these models, we're going to assign costs to the different states, for example. So let's say we have costs from 2010 on a drug and it's 2024 right now. We're going to have to make some adjustments to that cost to be representative of the net present value of what that price should be. So we usually adjust for inflation. But since we're building models to predict what's going to happen in the future, we have to take into account discounting.

So that value of that drug price or that drug cost is going to change over time. So we need to make sure we adjust for that discounting. There's lots of talk and controversies and discussion, even debates about how much do you discount and do you discount the cost and the benefits at the same rate? I'm not going to really go over all those debates and controversies and arguments. There are a lot that's just philosophical. But I do think it's a good idea to know what the average discount rate is for your country because each country is a little different. And the general consensus is that we want to discount the cost and the benefits at the same rate.

But really, if you have a good justification for not doing so, you just want to make sure you include those in your methods. But for now, we're just going to assume we're going to adjust the discounting for the cost and benefit at the same rate. So here's the formula for discounting. Very simple. We think about the value of something. Let's look at this example. Let's say today's value is $1 over 10 years. And let's assume a 3% discount rate. So we just put the value of one at the numerator. We have the discount rate, which is represented by R. And we have time, which represents the time. So in this case, in ten years, the $1 will be discounted at a net present value of $0.74. And this is very easy to incorporate into an Excel model. And when we talk about this in a couple of weeks, I'll show you how to do that.

So the reason why I picked 3% here is because this tends to be the average in the United States. But I've seen people use 4% or 5%. So if you wanted to use those, just make sure you provide justification or do some kind of sensitivity analysis around those discounting rates.

Now for inflation, you can use a consumer price index. I'm not going to go into debates about whether or not we should use the medical component of the CPI or some other patient index. I'm just going to use a CPI just for illustrative example. So here we have the value of $1 from ten years ago. How do we adjust for inflation? Well, if you use a CPI, it's really nice because the Bureau of Labor and Statistics actually has a calculator for you. Otherwise, you would have to get the tables and figure this out by hand.

The only thing I would change here is I probably use December because then you can get the actual inflation rate for the whole year for 2012. But for illustrative purposes, I'm just going to put in a dollar and look at the value of the dollar in January 2012, and then look at the value of the dollar in January 2022. And it's about $1.24. So you have 24% increased adjustment to the value of $1 from 10 years ago. Or in this case, from 2012 to 2022, because it's 2024 now.

Alright, so I'm going to stop here because I want to save the actual model construction for next week or the next two weeks. But before I do that, make sure you go to the GitHub site. I have the files already uploaded. So you can download the Excel sheet if you want to follow along in the next couple of weeks when we actually do the construction of the models. All the formula and calculations are on there.

If you want, you can actually go through cell by cell to see how I did the calculations, but I'm going to show you how to do that. I also have an online tutorial that summarizes the things we talked about today, as well as walking you through how to build or construct your own model that I'm going to talk about in a couple of weeks. So if you want to get a head start, you can actually read through the tutorial. It's an RPUBS, and it's publicly available through the GitHub site. And with that, I'm going to pause and answer any questions people have.

Jean:	There is one question here now. It says, you said that it gets computationally intensive to calculate a microsimulation probability as opposed to a cohort. Can you give an example where you could track an individual going through different probabilities?

Mark Bounthavong:	Yes, so when you think about individual simulations, you have sort of a track record. You can actually computationally create tables and identify where the patient goes to in each state. So this is where it gets computationally intensive. If you have 10,000 patients or 1,000 patients, and you have to build all of these memory tables for all of them, it can take up a lot of memory. And by doing so, it can also slow things down.

The other part that makes it harder to compute, because if you're saying, say you have 1,000 patients you're putting through or 10,000 patients, the part that I didn't really talk about today is the sensitivity analysis. Usually when we build economic models, we have to run sensitivity analysis to determine whether or not the parameters of our model have some kind of influence on the conclusions we make. A lot of times these parameters are based on distributions, because we always look at things in terms of uncertainty. And these parameters have a range of uncertainty about them. So you can simulate distribution selection for the values of each of the parameters in your model.

So if you have five parameters, you have five distributions. And you can run 10,000 probabilistic sensitivity analysis for those five distributions. Now imagine 10,000 times 1,000 patients. You're running an individual simulation. That can actually get computationally intensive. So you're multiplying things by factors of like tens or 100s or even 1,000. So you can easily get ten million simulations going. And then that can just slow things down.

Jean:	The only other question is if you could paste the GitHub site here, which I tried to do in the chat window, but I don't see it. So I'm not sure if it went through or not. Let's try it again.

Mark Bounthavong:	Yes, and the GitHub link is also on the PowerPoint presentation. It's just a hyperlink on one of the slides or on the slide that I'm showing right now. 

Jean:	Okay, it's also in the chat window in case anyone wants to see it there. Okay, so there's another question here. Can you explain agent-based models?

Mark Bounthavong:	Sure, I can give you a brief description. So agent-based models are like Markov models. It's just that the length, the cycle vary dramatically. And they don't really do it in long lifetime horizons. They usually do them in shorter periods. So they're useful for epidemics, especially when you want to understand how transmission of a disease occurs rather quickly, particularly in a global environment. I've seen agent-based modeling looking at flow dynamics of airport security to look at patients coming in and out of the airport.

Agent-based modeling is like Markov modeling, but taken to a whole different degree with an added layer of dimension in terms of flexibility with the size and length of the cycles.

Jean:	Great, thank you. And there's another question asking how do you decide the number of states to study? Is it up to the researcher?

Mark Bounthavong:	Right, I would kind of put an asterisk by that. It's really up to the researcher. But I always try to, this should be good practice, this should be best practice. I always work with a clinician who knows the disease much better than I do to provide some face validity to the model construction. Because there could be times where you build a model and you're not really familiar with the disease, but you're building it because maybe it's easier to build it this way. The clinician may provide some important criticism and feedback about building it that way, which will force you to think carefully about how you want to construct the models. But I do think it's really important to partner with an expert in the area, especially a clinician.

Jean:	Would you say also it depends on the literature as well?

Mark Bounthavong:	Yes, I mean, that goes without saying, right? Anytime you do research, you should read the literature before you do it.

Jean:	Okay, so there's another question asking, do you have any suggestions for text or books if we want to dive deeper to learn more about these kinds of models?

Mark Bounthavong:	Yes, I do. Andrew Briggs, I think he's at the London School of Economics. But before he was at the University of York, he, with Karl Claxton and Mark Sculpher, they wrote a book called the Decision Modeling in Health Economics. It's a book written in the early 2000s. It's from Oxford University Press. And it's a great introductory text to building decision models, particularly Markov models. And they have a lot of good examples of like state transition models that you could build in Excel. The book is dated because they haven't used R code yet, which is where the field is really moving to nowadays. But if you wanted to just sort of learn how to build these in Excel, Andrew Briggs provides a really good book on that. So let me just take a find a link for that. But here it is. So I'm going to post this.

Jean:	I just posted it.

Mark Bounthavong:	Oh, thank you.

Jean:	I just posted it in the chat window.

Mark Bounthavong:	That's great. Thank you, Jean. That's a great textbook. That's the book I give to my students to read.

Jean:	Let me just make sure there are no questions right now. Yes, if you have any final questions, you can post them now. Somebody mentioned that there's also a great book by Caswell on making matrix models. Very biological, but a good reference to learning about the theory.

Mark Bounthavong:	Oh, yeah, great. Thank you for that. Right. Yes, that's one thing to keep in mind. When we build these in a couple of weeks, you're not going to have to know matrix or linear algebra to do this. However, it makes things so much easier if you do know some matrix algebra. Because when you try to build these in R, that's all you do. You build everything with matrices. Whereas in Excel, it's more formulaic. It's very easy to build. Once you get into the more complex things, it's more flexible when you have good knowledge of the matrix models. Caswell is a good book to do that, yeah.

Jean:	Sounds like you could do a future seminar on R.

Mark Bounthavong:	Yes, people are interested in that. I'm happy to set that up.

Rob:	Hi, Mark and Jean. This is Rob. People are interested in R. We do some Vinci webinars on R.

Mark Bounthavong:	Oh, great. Yes, maybe one day we'll have to do a part three or something.

Jean:	Okay, I think that's it for all the questions. I don't know if you have any final words, Mark.

Mark Bounthavong:	Yes, just feel free to download the model that I have in Excel on the GitHub site. I do periodically make updates there. So if you want to just bookmark that or watch it, I'll be making updates in the coming years. I have students, I teach a course here at UCSD. So my students are always trying to learn this stuff. I'm trying to put everything up there on GitHub. So it's publicly available to everyone.
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