vinci-011124

Andrew:	Thanks, Rob. Alright, everybody. Hi, I’m Andrew. Welcome to another VINCI Cyber seminar. This one’s about managing research data, specifically in SQL Server Management Studio. This is going to be a highly technical presentation. I will do my best to break down some of the core concepts, but strap in. This is going to be a technical presentation. I’m going to talk about designing and creating tables. I going to talk about schemas and permissions. I’m going to talk about indices and compression. Essentially all of the tools that are available to you to manage your research database.

In this presentation, I assume that you’re familiar with the basic architecture of VINCI provisioned data. If not, that’s okay. There’s plenty of documentation and presentations about that. In fact, just last month we talked about that at length. So you can go check out the previous cyber seminar. I also assume that you can access and use the workspace and specifically SQL Server Management Studio, the application inside of that workspace. Again, if not, here’s a couple of user guides to get you up to speed.

When VINCI provisioned your data to you and hands you a database full of data, VINCI is then very hands off with it. You are free to use all the stuff that you get provisioned in service of your research. But with that freedom comes responsibility. If you’re my age 35 or younger, you maybe thought this was going to be about Spiderman and Uncle Ben, but it’s not. It’s Eleanor Roosevelt. Freedom makes a huge requirement of every human being. With freedom comes responsibility. So please be responsible in your use of the shared resources. There’s one big server, essentially for your research database and lots of other people’s research databases and some VINCI databases and other people.

So you you’re using a slice of shared resources and it’s better for everyone if we’re all responsible as we use it. Unfortunately, a lot of research teams don’t have a ton of SQL like DBA database admin type of knowledge on their team, and so it can be difficult to responsibly use those resources. So that’s what this presentation is going to be about. The plan, and if you’ve ever seen a presentation from me before, you’ve seen this slide before. The plan is to cover some core systems and principles in as non-technical a way as I can manage before we move on to the detail do’s and don’ts, pitfalls and tips and tricks.

I always try to ground the tips, tricks, and pitfalls and whatnot with their connection to the principles. The idea being, that’s how you can actually remember and accurately use the tips I give you. That said, this presentation in particular is more technical than most. We are going to spend a lot of time up here in the canopy with the do’s and don’ts. So if it feels like you might be lost on stuff, don’t hesitate to use the Q&A to ask questions and we’ll try to catch up at the end. I also have more slides in the slide deck than are allocated to the presentation. There’s like an appendix at the end with some additional information and some additional details. So if you feel like you’re missing some of this how and why, that might be where they’re found. So again, feel free to ask about it and I’ll show those slides at the end if there are questions related to them.

Alright, so let’s get into it. The first thing I’m going to talk about is database design. So what you start with is an SRC schema which has all of your cohort information. There are both tables and views in there. The tables contain patient identifiers and maybe your cohort description. So that’s going to tell you who’s in your cohort. And then in the views provisioned into the Src schema, that’s your actual data. That’s all your healthcare records for the cohort of interest. So that’s what you start with in Src. VINCI has created that stuff for you.

You also start with access to CDW dimensions. So those are not in your research database, they are in the CDW work database. And in particular specifically, they’re in the dim schema that DIM schema. And that DIM schema, it doesn’t contain any information specifically for your cohort. It contains general lookups that apply to any kind of Vista data for any cohort. So that’s lookup information like ICD codes or CPT codes or lab names, et cetera. You also start out with about 40 gigs of space allowed in your database.

That number has changed slightly over the years, so depending on when your database was created, you might have a little more or a little less. But right now it’s about 40 gigs. That space can be requested to be bigger, if you run out of space. But VINCI is resistant to doing that for you because remember, we’re using shared resources here. So VINCI won’t increase your space until you’ve proven that you’ve done the best practices to be responsible with the space you’ve got. And those best practices are what we’ll cover in this presentation. And then of course, arguably most importantly, what you start out with are questions. You have research questions or perhaps hypotheses, and so the whole point here is, how could you use all these resources to address your questions.

One note before I get into a lot of details on creating tables and stuff is the use of SQL. Now I recognize that of the various technical areas of expertise that research teams generally need, SQL is the most likely to be missing. Alright, research teams always have analysis chops in SAS or R something else. They almost always have a statistician or an economist, or somebody else who’s good at the modeling and the advanced mathematics you might need. But the data management itself, and specifically the language of SQL, is sometimes missing. Unfortunately, because SQL is the language of the server where VINCI provisions, the data, the expectation is that someone on your team can manage that data in SQL server.

So I’m going to assume you know SQL in this presentation. I imagine most analysts in the audience have at least some familiarity with SQL even if you didn’t study it at school. I’m going to lay a lot of technical information on you, so you might need to just keep these slides as reference so that you can use them later when you need them. If you don’t have that kind of SQL background knowledge to help you understand what I’m going to cover here, then just know that help is available. You can go to the VINCI training in office hour and sign up for a whole SQL boot camp if you have the time to allocate to something like that. You can go to the data services and field support page off of the CDW SharePoint site and get basic and intermediate introductions to SQL there. So please avail yourself of those resources if you need them.

If you’re panicking slightly because you’re not a SQL expert, like I said, somebody on your team is going to need that skill. Even if you plan to manage at a distance, so to speak, by using an analysis platform like SAS or R, You’re still going to need to be familiar with the language of SQL because the recommended way to touch your data is in a pass through. Again, because the provisioned data is on a server where SQL server is the language of those objects on the server itself, by far the most efficient way to access that data is in the language of SQL server. In other words, you’re communicating with the server in its language. Any other way of doing it requires some translation that’s going to slow everything down.

Of course, that kind of passed through query style is relatively common, and if you want more information about it, you go to the SAS grid like here and there’s more tips in the appendix. Also, we do have a SaaS admin as a panelist on this presentation, so if you want to ask a question about how to do that, hopefully he can answer it. But the bottom line here is, by far the most natural and useful platform for managing your data is going to be SQL Server Management Studio. That is its purpose. It was built for managing data in SQL server and that’s what you have allocated to you as a research team. So that’s what I’m going to use for the whole rest of this. Again, if you’re not familiar, go look at that user guide and then save these slides for your reference later.

Alright, let us get into the meat. So you probably want to create some tables, right? It makes sense to create tables. You can create permanent tables in your database. Very useful to do if you have more people on your team that are going to need to work with the same objects, you should create permanent tables so you can work with the same objects. That way it can be reviewed or edited by other people. But when you’re creating permanent stuff, you want to design backwards from your goal. So think about the needs of your analysis, whether that’s some kind of regression or some kind of modeling whatever it is, think about the architecture of the analytic file that you’re going to want to input into that analysis pipeline and have that be your end goal for the SQL phase of your data work. And then design backwards from what you want that analytic file to look like.

You’re going to want to think about normalization and specifically actually, it’s denormalization that we’re going to talk about, mostly in this. I’ve got a slide or two about that in a second so hold that thought. And then remember, tables are one row per something. If you’ve heard me talk about tables and queries before, you’ve probably heard me say one row per or something. The identity, the fundamental purpose and identity of a table, any table, you should be able to say it as one row per something. There’s an Einstein quote about not really understanding something if you can’t explain it simply. This is the sort of database version of that same idea. If you can’t describe a table you’ve created as one row per something, then either you don’t really understand the table you’ve created, or you’ve created a table that won’t be very useful. We’ll see an example of that later in the slide deck.

I’m going to talk about two different kinds of tables that you can create. I’m going to use these terms because they are the organizational principles of the CDW. The source data that we use, and those are dimensions and fact tables. So I hope you’re already familiar with those two terms, but if you’re not, dimensions are lookups. This is the stuff CDW worked at DIM that I mentioned. That’s reference information. It doesn’t contain specific facts about an action of healthcare delivery, like a visit or an appointment, but rather a lookup of reference information. Whereas the fact tables contain records of actual healthcare delivery.

So every different appointment that’s happened over the years with all the different veterans around the country, those should all have a row in the appointment table. Similarly, if they materialize into a visit, then you should be able to find a visit record. And if you want to know what happened in that visit, you probably need to join to at least one dimension in order to look up the procedure that happened, or to look up the diagnosis that was applied. So I’m going to talk about those two things, sort of separately in this talk, because you can create both and in my opinion, you should create both.

But first, let’s talk about normalization for a second. So normalization is an organizing principle for databases, and the point is to improve integrity and reduce redundancy. In the previous version of this presentation from about a couple of years ago, I had another slide here, actually a couple more slides here talking about the nuts and bolts of what that means. First normal form, second and third normal forms. I’ve moved those slides to the appendix because I just decided they weren’t that useful. You can see them there if you have the handouts, you can scroll down to the bottom and check them out.

But in a nutshell, what normalization is, is the idea that you should use more tables and more rows. Each table should be about one thing and one thing only and not have stuff about that one thing in other tables. And each cell should have exactly one thing in it, and then you don’t use more additional columns for the same kind of thing, you’d use more rows instead. This design principle explains a lot of the CDW architecture that might be unexpected to you if you didn’t study SQL in school. For example, in the visit table you’ve got one row per visit, but you can’t see all the different diagnoses applied.

It might make sense from an analytic file kind of research standpoint that you would see a whole bunch of different columns on that visit record where it’s like a column for diagnosis one and a column for a diagnosis two, and a column for a diagnosis three. That is not how the CDW is organized. Rather all those different diagnoses are in a different table. The V diagnosis table. And in that table, you’ve got all those different diagnosis on different rows. So the idea is, we’re using more tables having split it from visit to V diagnosis and we’re using more rows with our ten different diagnosis for one visit represented as ten rows in that V diagnosis table. So that’s the idea. Again, more details in the appendix.

What we are going to talk about here is actually more de-normalizing. So your source data is normalized. Again, that’s for reusability, and flexibility, it’s for efficiency. But for research and specifically to create those analytic files that I mentioned, you probably need to denormalize and flattening. I’m air coating with my fingers even though you can’t see me. Flattening is the same thing as de-normalizing. I’m going to use those two terms interchangeably. The idea is, instead of having multiple tables that are all really tall with lots of rows and not so many columns, you’re going to create the opposite. One or maybe just a few tables that are less tall, so they have to have fewer rows, but much wider because they’ve got more columns. So I’m going to call this your flat file or your analysis file, or your analytic data set. All of those terms are interchangeable to me.

I recognize they might be slightly different from where you’re sitting. But I’m going to use those interchangeably. And what I mean when I say that is a denormalized result. A single large table with one row per unit of analysis. Maybe that’s patients, maybe that’s facilities. And then columns for all the variables of interest that you’re going to need to input to your model or whatever it is. So the most common unit of analysis is patients and so the most common flat file architecture is one row per patient. And to use my visit and diagnosis analogy again, what you would have to do in a situation like that is find a way to take all those other rows for diagnosis and get them onto that one row per patient. And that’s what we’re going to talk about here.

So I do think—this is a question I get asked somewhat frequently. I do think that your SQL end product should be at the level of the unit of analysis, like one row per patient or one level more detailed. But don’t go past that. Remember that SQL is not an analysis platform. It’s for data management. It’s great at joining all these normalized tables together and creating your flat file, but it’s not good at actually doing the analysis. So use SQL for what it’s good at and once you get to that flat file, stop, and import that table into something else like SAS.

I also think that it makes sense to work towards your one big flat file with multiple smaller ones depending on how complicated they are and how many people on your team need to touch them. These could be temp tables that you put together into one big permanent table, or these could be smaller permanent tables that you work on collaboratively with others and refine overtime and then eventually put together into something big. Now I’m going to talk next about some nuts and bolts for how you might go about designing these tables. I should introduce this graphic before I go any further.

This isn’t an enterprise relationship diagram. ER diagram. And if it’s unfamiliar to you, then that’s okay. I’m going to explain the basics of it. Each of these boxes represents a table, so each box—let me turn on my pointer. Here we go. So each of these boxes is a table. You can see the title of the table here and then these are some columns. I’m using this diagnosis info idea just to represent that there’s more columns here, just not being shown. And then the important part is these arrows. So what the arrows are telling you is, you can join these two tables together on the columns that are being connected.

And this little bar indicates that there’s just one row on this side. In other words, there’s only one row with a particular visit ID. And then it’s this little crows foot looking icon indicates many rows on the other side, which is to say, in this diagnosis table, the same visit ID can appear on multiple rows. So this is the exact example I was giving earlier with the visits and the diagnosis. What’s going on here is, for any one visit, many different diagnosis can be applied to that one visit. And so you would join from your visit table which is one row per visit to your visit diagnosis table, which is many rows per visit is one row per diagnosis that happened at a visit. And that’s how you would find all the diagnosis you’re interested in.

So PK here represents the primary key. That’s the one row per something. It’s the identifier for that something. So you don’t ever expect those to be repeated. And then if you see that same column in a different table, that’s a foreign key. So the foreign key is a primary key somewhere else. It’s what you would use to join the tables together. I hope that little run down was a review because again, I’m hoping that you already speak SQL at least somewhat. But with that understanding of how to read this diagram, I’ve added some swim lanes here for the detail level at the top, and then the patient level at the bottom.

And the task for research data analysts is often this, taking your highly normalized source tables and finding a way to create a final analytic file or multiple files perhaps which are flattened. And one of the most common problems that people asked me to help them with were similarly, one of the most common root causes of queries being killed on the research servers is having created tables like this and then joined them improperly. So all the joins I’ve shown here are good joins. This is a one-to-one. That’s great. This is a one-to-many. That’s great. All the joins I’m showing are fine. But what researchers commonly do, is they’ll decide, okay. I want some way to connect my diagnosis from my visits to my procedures. And I can see that there’s patient ID in both places. I can see that there is visit ID in both places. Maybe I will use one of those to join these two tables to each other.

This is a bad practice and will probably result in your query being killed. The reason is that it’s a many-to-many join. So it makes sense to me, since you’re designing backwards from your end goal, which is down here, to think about what your primary keys are in each case and approach your queries from a, what do I need and how can I join it in a one-to-one or one-to-many kind of way. So don’t do it like this. These are bad. And similarly, any of these that are on the same level are also bad. If you need to put these things together, what you’re probably going to have to do is join to the other source that’s one, and then from that one go back to the other one.

Let me show you an example of what that bad joint looks like. So like I said, this is pretty common. You’ll have something called visits here. That’s this. Okay, this is one row per visit. Makes sense to me. We’ve got a patient identifier here. Then you’ll have something else. Maybe it stays. This is one row per inpatient stay. You see the patient ICN again, right here. If you think, oh, well, I’ll just join that on ICN because it exists in both places, this is a many-to-many join that will get killed probably. What’s going on here is that this one connect to this one right here and this one also connects to that first one and this first one also connects to the second one and expands you out to these four records. The same thing is going to happen for these twos expanding out to four.

And then this last one here comes in with another two. So in this example where there’s only two patients and we’ve got five and four records, maybe it doesn’t seem so bad. But in practice, you’ve got thousands or millions of these, and you’re going to try to create a table with billions of rows and that’s why it’ll get killed. But it’s not just bad performance, it’s also not really useful. What is this table that you’ve created? One row per what? What is it? It’s like a one row per distinct diagnosis procedure combination regardless of whether or not that procedure and diagnosis happened at the same time or anything. That doesn’t make any sense. That’s not a useful table. So don’t do this both for performance and logic reasons.

Good joins like I mentioned are one-to-one, or they’re one-to-many. So as you denormalize and create tables at higher levels of unit of analysis, like going from one row per diagnosis to one row per visit, you’re going to be working into this one-to-many kind of space. And then it’s pretty common at the end to create your final flat file with a series of one-to-one joins. Let me go back to the previous slide and show that really quick. So maybe you’ve created this outpatient results table and you’ve created a patient demos table and you’ve created an inpatient results table. Each of those is one row per patient ID. In the example I showed on the other slide, it was ICN, so maybe these are one row per patient ICN in your cohort.

You can totally join all of these together even if it’s a huge query where you join ten different tables together. That’s fine if they’re all already flattened to the same level. That’s just a series of one-to-one joins. A huge query with 20 joins where all 20 things you joined together are all one-to-one joins is a million times better than a single join between two tables that aren’t at the same level that have a many-to-many type of join property. So you basically just never ever do this one. Find some way to get what you want as a series of one to ones or one to manys.

In the CDW, you can use metadata to help you with this idea. All the proper joins are saved in a particular CDW metadata table. Because when the data architects created those tables, they did so with all of these kinds of things in mind. They have the ER diagrams. They know the proper foreign keys and so you can look those up. But in your research space, there’s no meta data unless you bother to create some. So you’re on your own here. And that’s why I’m really trying to hammer this home. It’s more common than you might think for researchers to try to work their way towards a solution in a way that involves these many-to-many joins. And once you start doing that, you are on a one-way train to having your _____ [00:26:48] killed and also having results that you can’t use.

Alright, so if you were looking at that previous step thinking, yes, that is what I want to do. I do need to sort of denormalize my way towards a flat file. Here I’ve got a couple of slides about how you can do that. So here are what I think of as the sort of essential tools in your tool bag to denormalize. I’ve got two example slides here. This first one is going from one row per diagnosis to one row per visit. So the task is okay, I have all these different diagnosis on a particular visit. I know I need to flatten to one row per visit. How do I do so? So these are the options with an example of each. The first option is a filter. This is generally the simplest one.

If there’s a filter that you can use in your source that will just pick one for you, then that’s totally reasonable to use. In this case there is. You can find the single diagnosis that’s listed as primary on the record and just pull that one and then you’re done. That’ll get you one diagnosis per visit. You could also have a custom hierarchy. So maybe you want these—I think these are brain injuries in descending order of severity. So you could have a little custom list here where you pick more severe things instead of less severe things. These two, I’ll talk about more in a few slides with sort of categorization and flags, but the idea is, you’d use the presence of certain diagnoses to set a category or a flag, or a series of flags on the visit record and use that to get to one row per visit.

Aggregation and calculation is probably the most flexible and sort of wide purpose one. There’s lots of different versions what this might look like. For example, you could count how many diagnosis appear per visit and that would give you one row per visit. That’s not a particularly useful example if I’m being honest, but on the next slide you’ll see a more useful. And then finally, pivoting. Alright so if all else fails, you can just do the denormalized example that I gave on an earlier slide.

You could just have column one for diagnosis one, column two for diagnosis two, column three for diagnosis three, et cetera, et cetera, et cetera. That’s not usually the best way to do things, but it is a common researcher tool, so it makes sense to have that one in your tool bag as well. And then of course, combinations of the above. Some of these things won’t necessarily get you to one per, but maybe in combination the will. And depending on what you’re doing, various combinations might be useful. So speaking of depending on what you’re doing, let’s look at another example.

So this time instead of one row per diagnosis to one row per visit, we’re trying to go from one row per visit to one row per patient. So again, there are some things we could do in terms of filters. This one doesn’t have a clear and easy example like the primary diagnosis. You can use a custom hierarchy categorizations and flags. Again, I’ll show some examples of that when I talk about dimensions in a minute. This is a good example of useful aggregation. You could show the first and last visit per patient. So perhaps you’re pulling data about patients use of a certain kind of care in the VA. Maybe their primary care visits. Instead having all 30 or whatever primary care visits a patient has had, maybe you just care about the time span of their interaction and so you just pull the first and last visit per patient. That’ll get you down to one row per patient and you’ll have those date times that you can then use for your next step.

Alright, so takeaways. Again, keep your end goal in mind. You’re not going to know which tools from those last couple of slides you might want to use unless you know what you’re final output should look like and what the needs of your analysis pipeline are going to be. So design with your end goal in mind and denormalize purposefully. Alright, so this is where I’ve chosen to fit in one little pitfall. We’ll talk about more pitfalls as the presentation goes on. Here if you try to create a table using this simple into syntax—we’ll show another way to create tables later in the slide deck. But this is the most common way. You try to create something into—you have a couple of options for what you’re going to say in your into statement.

You can have a custom schema like this. This one will only work if you’ve already created the schema, which I’ll show you in a second. You can use this one. This one will always work because V she creates a default schema for you. Or there’s this one where you just forgot to put a schema name. So what’s going to happen here? If you use this last one, SQL will not give you the default schema. You would think, based on what it’s called, the default is what you’d get here. Isn’t that what default means? If you don’t specify, then the default is the thing that happens. That’s not what happens here. SQL will create a schema named after your login and you will be the owner of that schema. This is bad. Don’t do this.

If you create a schema or really any object, but it’s almost always a schema with you as the owner, it means that other people on your team can’t manage that data. And if you leave the VA, then you have to request that VINCI go delete it for you because other people on your team can’t get to it or delete it. So don’t do this. The best practice here is not to ever be the owner yourself of something. Also you had to—fix it in a second. But first I want to talk about creating schemas because that was the first example on the last slide. So you can use default. That’s always fine. Remember that you have to specify the default schema when you create the table if you want to use it.

But I do think that an underutilized tool in terms of creating tables in your research database is to use custom schemas. You can create custom schemas. You are allowed to do so you just have to make sure you do it correctly. And so here’s just an example. Instead of default.cohort1TBIVisits, you could consider cohort1.TBIVisits. And then you could put the other tables related to cohort one in the cohort one schema. Similarly you could try TBI.cohort1Visits and put the other tables you’re going to create that are related to the brain injuries in that TBI schema. So I do think that if you’re going to create a bunch of tables, this is a nice way to do it. Again, you don’t have to. It’s totally fine to just use default. It’s no big deal. Especially if you’re going to create very many tables. You might as well put them all in default.

But if you are going to create one, you’ve got a couple of options for how to do so. You could do it in the object explorer with a right click like this. Or if you want to do it in code, you can do it like this. But note that I’ve got this authorization uORD Holbrook. That’s the owner. So we want to set the owner correctly. This is the kind of owner that you want. If you use the right click way, you’ll end up with a screen that looks just like this properties, except that this is _____ [00:35:09]. So either way, whichever method you use, you want to put in the correct owner here. The correct owner is a user group with the name U plus the name of your database.

And if you can’t remember that, then just go to your default database and look at the properties under the default database and you’ll see this schema owner with the correct thing filled in. So you can just copy paste that over to the one that you’re creating. So just to recap, please don’t create any of these. Don’t do this. If you create this on accident, please delete it. You can just right click and delete from your schemas in the object explorer. You don’t want any of these, so delete these. And instead either use default or use the custom ones assuming that you have created them with the correct owner.

Alright, so assuming you’re equipped to create some tables, now you want to know what kinds of tables should you create as you work to denormalize your data for analysis. Again, two kinds. Let’s talk about dimensions first, because they’re simpler. You do have access to the CDW dimensions. Remember, these are broad lookups. They apply to all VA data, so it’s got all the CPT codes in there that you might find in your procedures view as provisioned to you. But they contain a lot of stuff you probably don’t need. In fact, they almost certainly contain stuff you don’t need. And they usually don’t contain stuff that you do need because for your research purposes, you probably need to categorize or flag the records that you’re going to use.

So this is an example of the ICD code dimensions sort of as they exist in CDW Work. You can see that I need a join here just to get the description, which is pretty annoying because you probably want to know the description when you work with this stuff. So they don’t contain something you did want. We had to do a joint to get that and look at all this junk. We got all these columns of almost entirely nulls. Do you care about these things? Maybe. Maybe there’s a few of these things you care about, but do you care about all 25 of these columns? No. No, you don’t.

So alternatively this is what I would prefer. This is what I propose to research teams at this stage in their analysis. Take what you find in the CDW Work dimensions and create your own custom dimensions in your study database. You can pull all the codes if you want, or just a subset. The ones that you’re interested in. Either way is fine. You want to make sure you pull whatever the foreign key is that you’ll find in your table. So that’s these things here. And then you can go ahead and apply additional processing to make these more useful to you. So here is a set of encounter types based on CPT codes. This is great architecture if a given code can only be in one group. So if you know that this code is always evaluation and it can never go into any other category, then you can use this where you’ve got one column for the category.

If you want codes to be able to fit into multiple categories at the same time, then you should instead use this kind of architecture. These are inclusion flags essentially. And I don’t have any examples on the screen. I wish I did, but let’s say we had off the top of my head thirty-three I think depression. I could be wrong about that. Maybe that would be appropriate for psychotherapy, for depression, and pharmacotherapy for depression. So we’d see zeroes. For the other stuff we’d see two different ones here for these two different depression columns.

So if you can fit into multiple categories, you want this kind of architecture. Either way, this is way better than using the raw dimensions because you save these things and work through to add more value to them and you cut the fat of all that stuff you didn’t need. And when you save these as permanent tables, you can then send them along for review if you’ve got a clinical associate or maybe just to your investigator to review the mappings that you’re doing here. You can save those mappings in a permanent way and work with them and refine them going forward. Much better than using the raw CDW dimensions in my opinion.

So tips for creating a dimension. Remember one row per something. So you’re going to want to avoid many-to-many joins by pulling those SIDs. So on the previous screen I had ICD10SIDs and CPTSIDs. You want to keep those in your dimension because those are the foreign keys to your fact tables. So make sure you keep those. And in fact you’re probably going to want to index them too. I’ll show you how to do that in a few slides. Though dimensions are small and easy, if you’re learning SQL as you go and you’ve never done this whole table creation, processing type of situation, please do the dimensions first before you tackle the fact tables. Get your growing pains out of the way on these small queries that are very unlikely to be killed. The dimensions are small. There’s no patient records in there, so you’re much safer to experiment here and grow your skills before you tackle the fact tables.

So let’s talk about fact tables. So again, denormalize purposefully is going to be really important for this. And then for the fact tables in particular because they’re so big, the indexing and compression become really important. And it’s very common at this point for researchers to ask me about space. If you’re worried about running out of space, remember you have 40 gigs. The first two things are okay, well, were you greedy? In other words, do you have tables you don’t need? Do you have columns you don’t need? You should try to trim the fat.

And then if you didn’t already use compression, you’re going to need to use compression. And then you can consider a view. I’ll show more of all of this information later, but I want to bring it up at the top because space considerations tend to be top of mind for people. And if you ask VINCI for more space, we will make you verify that you’re hitting these things before we give you any more. Remember the space is a shared resource across your study and lots of other studies and VINCI and other user groups. So we will be resistant. It’s not impossible to get more space, but you will have to use compression and sort of show that your tables are necessary and stuff like that first.

We’ll talk about indexing first and then compression. So again, crash course in technical stuff that you maybe didn’t study in school. There are a few different types of indices. I’m going to talk about these two mostly because they’re the ones that you really need to be using. One of these two for all the tables you create a regular clustered index or a clustered column store index. I’ll show what those are in a minute. Non-clustered indices are sometimes useful, but rarely necessary, so I’m not going to focus on them here. And then there are some interesting, specialized indices which maybe will be useful to you, but are niche cases that I’m not going to bother with in this presentation.

But why do you need indices. For your efficiency of queries is the main purpose. Every time you’re joining tables together, SQL is going to try to use an index to make your query run quickly and to not take up a bunch of tempdb space with intermediate results and stuff like that. So you really want to be mindful of your indices for your query performance. And then also what I’m calling mindfulness here, what I mean is, you should be creating tables in a one row per something and every table has a primary key way anyway. Because you’re doing that anyway, you should already know what you’re going to index.

So let’s talk about the different options. A clustered index physically orders the rows by whatever column you’ve chosen. That’s great for seeking, which is like a lookup. It’s mutually exclusive with the column store, and you can only have one clustered index. For example, dictionaries and encyclopedias have a clustered index on word ascending. Which is to say, all the entries in the books across the volumes are ordered alphabetically in ascending order. This is the exact same way that a clustered index works on the server. In general, use a clustered index on the primary key SID column in your DIM tables. So that’s the CPTSID in your CPT DIM. It’s the ICD10SID in your ICD10 DIM, et cetera.

Clustered column store indices are pretty new and specialized compared to the other kinds of indices, but they’re really useful if you have a big table that’s like really tall. So if you have a fact table that you’ve created that’s bigger than a million rows, then you’re probably going to get a great result with this clustered column store. It’s great for scanning. Scanning is different from seeking in that for scanning, you’re trying to process a lot of rows at the same time instead of just finding one. As a lookup, you’re processing a bunch.

So this is what you’re doing if you do some kind of aggregation or calculation across rows that’s a scan. Again, this is mutually exclusive with a clustered index, so you got to pick one or the other. And my general recommendation is, implement CCI on the fact tables if they’re bigger than a million rows. If they’re not bigger than a million rows, then same as a dimension, clustered index on your primary key. I’m going to show you how to do these things in a few slides if you’re worried about that.

Okay, here’s the non-clustered index. This is like the index in the back of a textbook. It increases the object size because you need more pages in the back of the book to show these in index values. But it’s useful for columns that you’d search on if they’re different from the thing you used to order the entries. So if your encyclopedia is ordered alphabetically, but you also have entries that have to do with different time periods, then maybe you put those time periods in the index. If you can’t easily find the time period without the index because they’re not ordered that way, they ordered alphabetically. So same idea in the server here. These are not usually necessary, and if you use a column store index, they’re never necessary. Well, that’s an oversimplification, but I would never recommend that you use one barring special circumstances.

So those are the recommendations for indexing. Let’s talk about compression real quick. I used to have in a previous version of this slide deck more details about this. Again, these are going to be in the appendix. The bottom line is, row compression. Don’t bother with it because it’s included in the better ones. Page compression. Do it if you have a regular index, regular cluster index. And column store is both an index and a compression algorithm. Let me show you how to do it and what it looks like when you do.

So here is an example table. This is a huge, huge table. It’s got what, 72 million rows. It’s using 2.7 gigs. And if you’re familiar with sort of compression _____ [00:47:21] types of things, you probably looking at this thinking, this is a great candidate for compression. It’s got all these date times where there isn’t really a time component, so we could get rid of all of those. It’s got a lot of repeated values across these columns. I do think this type of table is a pretty good representation of the sorts of things that I’ve seen from research teams. You got a lot of rows; you got a lot of repeated values. You’d probably have more columns here with more things possibly also with a lot more repeated values.

So this is what this is. This is a heap with 72 million rows. Some of you are thinking, wait. A heap. Yes, a heap. A heap is actually a technical term for the collection of rows you’ve saved with no index. In other words, a disorganized set of rows is called a heap. It’s very similar to a disorganized pile of clothing on your bedroom floor. And as much as you might claim to your mother that you could find the exact thing you want quickly and efficiently, even though it’s a heap, be honest, you really can’t. So don’t be that kind of researcher. Please use an index instead of a heap.

For my example, that 72 million row heap compressing it in these three different ways gives these results. Again, this is a huge table, so column store is great. Don’t bother with the row. You should always pick one of these two. For the dimension example which has fewer rows, these came out the same. You might as well do this one. Okay, how about speed? So for selecting and joining, in other words, for getting records to display to you, performance will depend on how the table is going to be used. Like I mentioned, there’s a scan versus seek differentiation here. CCI is generally really good at scanning. So if you’re looking at lots of rows at a time and your table is really big CCI is going to perform great. It diminishes the IO cost because SQL can pull all those rows information in in a compressed way so that it gets a whole columns worth of values with taking fewer bytes essentially.

Seeking is for lookups. So every time you fetch values for what that code means, that’s a seek. And for these, a clustered index is faster. Let’s talk about how to implement compression first, and then I’ll show you examples of how to index. So you can do this with a wizard. You going to right click on the table. In my example here, you do storage and then manage compression. You see something that look like this. This is the data compression wizard. To my eternal disappointment, we’ve allowed Microsoft at all to co-opt the word wizard for things like this. I think wizards should be agents of wonderment and firebolts, but instead they’re things like this now.

So you can use this wizard to implement compression using this drop down. But notice that there’s no column store here. That’s very annoying. If you want to use column store compression, you have to do it in a slightly different way because remember, it’s also an index. But it’s really cool that you can select page here and then click the calculate button and it’ll show you what it thinks the space will be. So that’s really nice. That’s a sort of cool feature of this wizard. If you want CCI instead, you have to find it under the indexing. So in this case we’ve right clicked on the index folder and then new index, and then down to the button here. That’s just because remember, the column store index is both an index and a compression algorithm at the same time.

You can right click on the indexes folder. So this is the same thing. Again, new index to do a regular one here. Non-clustered and column store. So these are the other options in that same menu. This is how you do it in code. I’m not going to go through all the details here. This is going to be a copy paste. Just remember that you need to fill in your names here, here, and here with whatever you’re going to sort on in this my column spot. And then you just put this in as is. So just put that right into your query. Don’t worry about it too much. You want that sort in tempdb on n any of the servers that you’re likely to be using, so I wouldn’t worry about it. Just put that in.

If you have an object that already exists, you can index and compress that full object. That is the most common way to do it. You create a table with a select into, it just fills up a heap with the records that you wanted, and then you can come in after the fact to index and compress. That is the most common practice. It is the simplest practice. It is not the best practice. It’s easy to do, but it’s not the best practice. The best way is to create an empty table first with indexing and compression already done, and then insert the records into that empty table. This is annoying because you have to set all the data types. They can’t just be inherited from your source. But this is the more efficient way to do it.

If an index already exists, you can alter and rebuild. Again, this is a copy paste job for you to use. People always ask which column to index. The principle is, whatever you’re searching the table on, so whatever your joint criteria are going to be, that’s what you should put in your clustered index. The more unique, the better. That’s why primary keys are typically a good index choice. For CCI, you don’t worry about this. You don’t specify a column because CCI just includes all the columns by default. If you’ve done the above and you’re still getting huge stuff, then consider review.

So real quick if you’re not already familiar. What a view is, is essentially a saved query masquerading as a table. So if you have a complicated query, it runs pretty fast, but it gives you a huge result. Then a good solution would be, instead of saving all those results into a table that you then have to compress an index, you can save the query as a view. And a view takes no space whatsoever in your database because it’s just a saved query. And then every time you use it, which you do just like it was a table, every time you use it, SQL has to run that query first in order to fetch those records.

So here’s how you do it. You can check the syntax if you want by right clicking on any of these SRC views and doing script view as create to new creator window. And what you’ll see is something that looks like this. Hopefully this part is relatively familiar to you as a SQL user. It’s just a regular select query. Same as what you would’ve written. So all you got to do is work on your query until it gives you the stuff you want and then add this create view with a name to the beginning. That’s all it is. Add create view name as in front of your select query, that’ll get you what you want.

In terms of managing the resources and trying to figure out how and what to compress or if you should use views and stuff, I recommend these two tools. Top tables, and SP report compression. This is something you get out of the object explorer which looks like this. So you right click on your database, right click, select reports, standard reports, and then it’s this one. There are other useful reports here, but the one I’m showing is disk usage by top tables, which shows you all these different tables along with their number of records and how big they are. So if you see things here that are really big, this can tell you, oh, maybe I should be deleting some of these.

The other thing I showed is a stored procedure. So you run that one in code like this exec, and then SP underscore, report underscore, compression. And it looks like this, very similar to what we saw on the last slide, except there’s some additional cool stuff in here. It tells you the index type. Remember heap is a technical term, so it says heap if there’s no index on. And then it’ll tell you the row count, how big it is, what kind of compression if any, exists. So you’ll see page, column store, or none typically. And then if it’s a compression candidate, which means, oh, look. It’s kind of big, but it’s a heap. So this is SQL telling you hey, yo. Please compress these.

If you ask for more space, VINCI will make you run this report. And if you have things that say yes, we will probably tell you no to getting more space. So you really do have to do this. If you run into permissions issues with either of these things, please reach out to VINCI. I’ve verified that you’re supposed to be able to run this report in your database, but every once in a while it doesn’t work for somebody, and then we have to double check a certain permissions settings. So just reach out to us if that happens to you.

Alright, so key takeaways from this presentation and especially the indexing part is, don’t be greedy and design purposefully. I recognize that most of you don’t have the background to feel super confident with these indices and compression as I showed. But you are expected to use them unfortunately. This is SQL server data that we’ve provisioned and so responsible use of that data requires using the tools I’ve shown. And then monitor your use of resources with those last two tools I showed.

Some additional resources for you going forward. Feel free to come join the VINCI office hours. You can ask us questions about this. SQL office hours with BISL or the TW support team also a good spot. And then here’s some documentation from OIT and the CDW support team about building tables, best practices, compression, et cetera. Quick thank you to my data services team. You’ve heard me talk all these presentations a lot, but I get help from my team to build these. Thanks to the SAS admins for advising me on the SAS part of this and then CDW data services for your support as always because I link to your stuff all the time. And I don’t think I left much time for questions so sorry everybody. Maybe we can hit just a couple before we’re at the top of the hour.

Rob:	Sure. We’ll try to hit a couple. Luckily, your discussions did answer a number of them. So this person asks, when will the _____ [00:58:25] participants receive a bootcamp be notified if they’re in the class for 2024? I know that’s not about your…

Andrew:	Yeah, yeah, good question. So the confirmation e-mail is going to go out next week. If you signed up sooner than last month I think maybe was the cutoff, then you’ll definitely be offered a seat in the one that’s next month. If you signed up last month or this month, then it’s a maybe, maybe not. But again, you’ll see that confirmation e-mail next week asking you to confirm your availability.

Rob:	Thank you. This person writes, for me, DFLT.xxxx—hope I’m reading that correctly—is equivalent to xxxx someone else set it up. Does this mean that they changed the default schema to DFLT? That make sense?

Andrew:	I’m not sure that I totally followed that. You can always e-mail us at VINCI about it. Are you saying that your default has an owner like this?

Unidentified Male:	Andrew, that was when you’re talking about the default schema not being default, where if you don’t enter a schema, it will create the user schema. This person is saying that somehow it is the default schema, so if they just don’t enter a schema, it automatically uses the DFLT schema.

Andrew:	Ah, wonderful. Wonderful. Okay, I have heard that that exists in some research databases and I have not been able to figure out how or why. In my test database it works like this and in the other one that I tested with yesterday, it also works like this. But if for you it gives you the default then wonderful. Wonderful. Use the default.

Rob:	So it looks like we going to go a little bit late, if that’s okay with you, Andrew. There’s a few questions that I think you can answer.

Andrew:	I’m totally fine.

Rob:	This is this a follow up to something Brian answered. He’s asking is there a way to add someone to the VINCI Workspace without them having a study to join?

Andrew:	Yes, I believe you can I think through the operations type of customer process you can probably make that happen. I think sooner or later, VINCI is going to want to set up a workspace for you though. Am I wrong, Brian? Maybe you’re more knowledgeable about this.

Brian:	The only way you can gain access is through operational using key pass or you have to have a study and go through DARP. Those are the two only ways to gain access.

Andrew:	Yeah, so that operation study how to on VINCI University is probably the way that it would tell you the steps.

Rob:	Thank you. How important is using partitioning/partition keys—whoops. Looks like Avery just answered that verbally. We can make the difference between a query running in 15 minutes versus a few seconds, so I’d pretty important, especially when joining many tables and/or accessing a table that has many records.

Andrew:	Yeah, always, always use the partition keys in the source. If your stuff in SRC dot, those fact tables are huge and partitioned and you got to use the partition keys for the stuff that you create. When you implement CCI, the default partitioning that it will do automatically is generally pretty good. In my example, I did not specify custom partitions and it worked fine for me in my CCI example. So I don’t think that you would need to do that.

Rob:	Here’s one that I can answer. Somebody’s asking how they will be able to access a copy of the slides. There was a link in the e-mail that you received approximately four hours ago if you registered for this webinar ahead of time. You’ll also be receiving emails in two days with a link to the archive of the session where you can find all of the communication materials, including slides. I think this will be the last one that we can ask. And then I haven’t forgotten Andrew, you want to put a link to the form after, so maybe you can mention that. But the question is, are any additional VINCI project management webinars planned that cover records management disposition procedures for VINCI project files?

Andrew:	Okay, great question. So between the presentation last month, which you can find the recording and hand out at the back catalog and this one, that’s the sort of extent of record management. I’m going to give a talk next month about efficient querying, the other side of the coin of using your records. And then that’ll be it. So if your questions aren’t answered in this presentation or last months, then probably show up to an office hour and ask and we can talk about it there. And then thank you, Rob. I did forget. So I have a forms link for upcoming VINCI presentation ideas. They’re not guarantees, but they’re ideas that we are developing and I’d be interested in your help field in helping us prioritize them.

Rob:	And I’m posting that right now. If you’d like to make closing comments, Andrew now would be the time and. Then we’ll close right after that.

Andrew:	Okay. Well thanks, Rob, and thanks team. Thanks field for joining. I hope you learned something. If it was a lot, then please don’t be shy about showing up to the office hours. You can ask any follow up questions that you think of later there and I’d be happy to address those. Similarly vinci@va.gov, we’re always…

		[image: Logo

Description automatically generated with medium confidence]

CONFIDENTIAL - Page 1		Transcribed by Research Transcriptions	
image1.png

