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Robert 
Auffrey:	-- to you?

Todd
Wagner:	Sounds great. Thank you, Rob. Just a reminder for those folks who just joined, I’ll be monitoring the Q&A. My name’s Todd Wagner. I’m a Health Economist and I direct the Health Economics Resource Center.

	If there are clarifying questions while Dave is giving his lecture, I will try to do my best to interject and interrupt him. 

	But if there are bigger questions, I’ll let you know in the Q&A and we’ll probably hold those for the end. 

	I believe Dave has about 45 slides or so. So, it’ll just give us a chance to dive into some of the bigger questions.

	But without further ado, it gives me great pleasure to introduce Dave Chan. Dave is an economist and a physician. He’s a practicing physician here at the VA-Palo Alto. He is an economist, and he is also an associate professor at Stanford.

	So, without further ado, Dave, take it away. Thank you so much.

Dr. David 
Chan:	Thank you so much, Todd, for that introduction. It’s great to be here to talk about this what I think is a pretty important, pretty cool set of methods that we can use as researchers. It’s very kind of relevant for some of the questions that we might ask in the VA and the data that we have at the VA that’s Empirical Bayes.

	You’ll see that there are some connections with an earlier lecture on fixed effects and random effects. So, I think it follows very nicely from that earlier lecture.

	So, as an introduction, the reason why these Empirical Bayes methods, I think, have grown in use in recent years is that researchers increasingly have access to detailed enlarged data with unit identifiers.

	By “unit”, I mean things that we might be kind of interested in such as physician identifiers or hospital identifiers where we might be interested in kind of the individual performance of physicians and hospitals.

	This is particularly true in the VA where—as many of you know—we have access to quite detailed data in the operations of the VA that have these units. These units may matter for outcomes of interest.

	At the same time, we have an increase in development and computing power that allows analysis to account for these units. So, there’s been an older body of work that has kind of laid a conceptual framework called Empirical Bayes from the 1950s or so. 

	There’s been recent advances given the increasing availability of these detailed data and the increasing availability of computing power to provide some powerful tools to kind of analyze these unit specific parameters in the setting when observations per unit are finite.

	So, you might have many different doctors that you observe in a given hospital and each one of these doctors sees a finite number of patients. We want to kind of form some sense of these parameters that vary at the doctor level.

	So, what I’m going to be talking today is to give you an introduction about Empirical Bayes. I’ve used these methods in my recent research. But I don’t consider myself kind of the national expert on Empirical Bayes.

	But I’ve borrowed heavily from a recent National Bureau of Economic Research Methods presentation by Chris Walters and Jacquelyn (SP) Gu. So, if you guys find this interesting, I would highly encourage you to go to the NBR website and look at these presentations which go into a lot more detail into the theory behind Empirical Bayes, okay?

	So, I’m going to ask one poll question just to get a sense of my audience here. I’d like to know, “How familiar are you with Empirical Bayes methods? Number One, I’ve used Empirical Bayes methods in my work or I’ve kind of worked with people who have kind of used Empirical Bayes for the question that I’m seeking to answer. Number Two, I have some understanding of Empirical Bayes methods, but I’ve not been familiar with them in my work. Number Three, I’ve only heard of the term Empirical Bayes and Number Four, I have not heard of the term Empirical Bayes.”

Robert
Auffrey:	Dr. Chen, that poll is open. I’m not sure if you can see it on the side. We have--

Dr. David
Chan:	Great, yes.

Robert
Auffrey:	--about 66% of our attendees already finished. I think a couple of—

Dr. David
Chan:	Great.

Robert
Auffrey:	--people are still making their choices and providing their answers. So, I’m going to leave it open for a little bit longer, but not much more.

	(Long pause)

	It does look like things have slowed right down. So, I’m going to go ahead and close the poll. 

Now I’ll share the results out, but I’ll also read them to you in terms of percentages. Not sure if everybody can see. Sometimes the polls give us a hard time. So, what we have is that only four percent said that they have used Empirical Bayes method in their work. 

	Let’s see—21% say that they have some understanding of Empirical Bayes methods but have not used it in their work.

	Thirty-seven percent say that they have only heard the term and 13% say they have not heard the term. There were a few that didn’t answer at all. So, back to you, sir.

Dr. David
Chan:	Great, thank you so much. So, I think this lecture is perfect for this audience. So, of those who have responded, about a half have said that they’ve heard of the term “Empirical Bayes”. 

	So, this would be great because it kind of explains. It’s a great introduction to implant Empirical Bayes.

	For the next highest percentage—which is those who have some understanding, but not use it in work, I think there’s been recent developments in the last few years. There’s really kind of cool applications that I’d love to share with you guys.

	So, for the rest of this talk, the outline is first, I want to set up a basic model that would be kind of good as a discussion point to introduce Empirical Bayes. Then I’m going to be talking a little bit about theory and the philosophy behind using Empirical Bayes because it’s very much kind of a view of the world when you’re kind of using Empirical Bayes.

	Then I’m going to talk about some ways in which Empirical Bayes is practiced from the very kind of basic, normal model into kind of more recent developments. This is going to kind of lead into extensions. What are some of the more recent kind of developments in the field and connections?

	So, there’s some interesting connections between Empirical Bayes and machine learning, and Empirical Bayes and multiple hypothesis testing that I’d love to highlight because it helps kind of show both the power of Empirical Bayes and it kind of illustrates the philosophy behind Empirical Bayes as well. 

	Finally—if I have time—I’m going to end with a couple of applications in the VA setting that I personally have used Empirical Bayes in to just give you a sense of how you might use it.

	So, as a basic setup, I want to kind of use as a kind of basic example here that we have units. Just to be concrete, we’re going to say these units are physicians. We’re interested in physicians’ impacts on certain outcomes. 

	Each of these physicians we can observe having certain patients. So, we have patients I which are assigned to one of the J physicians. There’s some assignment of patients-to-physicians which I’m going to denote here with this assignment function. J(i) is the physician that is assigned of patient I. 

	Each physician has some number of patients that are assigned to them. Importantly in Empirical Bayes setup, this is a finite number. It’s not an infinite number of patients.

	Of course, in the real world, this makes a lot of sense. Even though we have millions of observations in our typical VA data set, when we’re kind of drilling down into things like physicians, we’re going to have a finite number. It could be as small as 50 patients assigned to a given physician in a certain time period.

	We’re interested in a given outcome. We’ll call this outcome Y. This outcome is specific for Patient I. I’ve kind of put this as a function of J because we’re really interested in how this outcome varies when this patient is assigned to one physician versus another physician.

	An example of this outcome might be spending. It could be mortality. We’ve kind of used several of these kind of outcomes when we’re interested in things at the physician level.

	We have a very simple additive model here. We’re assuming random assignment to patients here later on just because it’s an easy kind of starting point of discussion. 

	This may not be the case, of course, and doesn’t have to be the case. So, with a simple model, we’re interested in this parameter called Beta J which is if a patient is assigned to Physician J this physician—on average—has an effect on this patient outcome which is Beta J.

	There are other things that vary at the patient level which we call epsilon I. These things are things such as the patient’s age or their comorbidities and they’re all kind of summarized as epsilon I. That’s kind of the relationship in which those patient characteristics have an impact on the outcome of Interest Y.

	Okay. So, we call—in the Economics literature in many settings, not just healthcare—we can call it the education setting, productivity setting. The Beta J is called the value-added of Physician J. 

	If you’re assigned to Physician J as opposed to Physician J Prime, that can be interpreted as the treatment effect of being assigned to Physician J instead of Physician J Prime. This is a causal model that I’ve written out here. This is not an econometric model just yet.

	An epsilon—as I mentioned—represents other patient characteristics. In this case, we’re going to normalize epsilon to have them meet zero.

	Now the object of interest is the unit’s specific parameter Beta J or in many settings, we’re actually interested in the setup parameters of Beta J for all of those J’s that we have or for some subset of J’s. 

	So, we’re not just necessarily interested in one of these kind of physicians. We’re interested in how this physician relates to other physicians in their value-added or maybe what’s the distribution of value-added across the seven physicians.

	Now in the random effects and fixed effects talk that you heard recently as part of the cyber seminar series, we kind of had other Empirical models where we might have physician effects.

	So, this is kind of another model that I’ve written here where we’re actually interested in the treatment effect of a binary treatment D. But we also recognize that there are physician effects that might be operating here.

	Here, these physician effects are kind of nuisance parameters. We’re not interested in these physician parameters. We’re actually interested in trying to estimate Beta in this model. Those other physician effects might be nuisance parameters in the sense that they might bias our estimate of Beta if the assignment of physician is correlated with treatment. 

	So, we might want a control for physicians’ effects or we might need to account for them because we might want to increase the efficiency of our regression. So, we might want to include them as random effects even if they’re not correlated with D.

	But in this case, we’re not trying to extract. We’re not. Our primary object of interest as a researcher or as a policymaker is not in these alphas. We’re interested in the beta here.

	Now in this talk, our primary object of interest in the betas. We’re interested in the physician value-added and that’s going to motivate how you think about Empirical Bayes, okay?
	
	So, when we’re interested in these kind of betas, it’s important to ask how large is J and how many observations we have for each of these J’s. So, how many? What’s N of J?

	This is kind of a fundamental issue in Empirical Bayes that these methods are seeking to improve our understanding of the underlying data—our understanding of the underlying kind of mechanisms--is that we have a finite sample of observations for each J. 

	If we had an infinite numbers of observations for each J, it would be pretty trivial to estimate all of these kind of Beta J’s. We would estimate all of them without any kind of estimation noise and we wouldn’t need Empirical Bayes.

	So, Empirical Bayes, you can think of as a way to address this fundamental issue that we have finite number of observations for each of these J’s. Yet, we want these kind of granular parameters that vary at the J level.

	Okay. So, there are some important kind of research and policy questions that you might ask when you have this type of model. So, one question you could ask is what is the value-added for a particular physician? Just like what does beta want? What is the beta for Physician Number One?

	That doesn’t really mean so much unless you know the betas for other physicians like you’re interested in treatment effects. What would effect B if this Physician One treated a patient versus Physician Two?

	So, most of the time, we’re not really interested only in one parameter. A lot of times we’re interested in the distribution of. “What do the Beta J’s look like?” “Are there some outliers?” “Are there some physicians who have an outsized impact of patients in a positive way or in a negative way?”

	So, that’s a very common question that we’re interested in, in Empirical Bayes. We’re also interested in kind of questions of classification because each of these betas are estimated with noise.
	
	So, we’re not 100% sure what a physician’s beta is. But we can form a guess of what these betas are by Empirical Bayes. We might ask questions such as, “Which physicians would be classified as being the top 10 percentile of performers?”

	Because we have estimate noise, Empirical Bayes allows us to have a framework to kind of classify physicians knowing the cost of a Type One error versus the cost of a Type Two error.

	As I said on the previous slide, with infinite observations for each physician, these questions would all be trivial. We would know the distribution perfectly. We would be able to classify physicians without any Type One errors or Type Two errors.

	But in practice, we have finite observations. Sometimes very few fruition and Empirical Bayes methods can provide tools for answering these questions.

	Okay. So, that’s the basic setup. On to theory and philosophy. So, now we have this value-added model which is a regression model. It’s a very simple model and it follows from what I previously described.

	So, this is the value-added model on top. This is a causal model and now we are moving to the world of regression. For simplicity, I’m going to assume that patients are randomly assigned to physicians.

	So, then we can kind of very simply kind of regress the data to get estimates of the underlying causal model. So, what I’ve listed here in the second equation is kind of value-added in an OLS regression where we have only one observation for each patient—YI—and we know which physician that patient is assigned to. 

	We assume that we have random assignment of patients and physicians, so that epsilon is uncorrelated with the value-added of that given physician. All of these papers in the reference list have ways to relax these assumptions.

	But as a very kind of simple starting point, it’s good to start with the case of random assignment. Some of the examples later on we can use instrumental variables approaches or other kind of approaches to deal with causality if we don’t have random assignment to physicians. So, building on the other methods that you’ve heard in the cyber seminar series before me.

	(Coughing)

	Excuse me. A note on fixed effects and random effects. So, you’ve heard of these terms as well probably. There are two statistical assumptions one might have about these Beta J’s. 

	One is that there are a bunch of unknown parameters. Each one of these parameters kind of stands on its own and they are unknown parameters that we would like to estimate.

	The random effects assumptions kind of treats these Beta J’s as random variables that are draw from a distribution of interest. This distribution which is what we call G.

	So, these kind of physicians are drawn at random from a bigger population of physicians. In some cases if G is a continuous distribution, imagine some type of infinite population. You’re drawing physicians from this distribution.
	
	I’m going to talk a little bit about what that means because it sounds like a weird concept, but it’s kind of the most literal view of this kind of random effects concept, okay?

	There are two corresponding estimators that kind of correspond to each of these assumptions, okay? So, there’s what we call a fixed effect estimator and there is an Empirical Bayes very much akin to a random effects estimator.

	So, the fixed effect estimator, what I’ve written here is that in this very simple model that we had on the previous slide, the fixed effect estimator’s simply the main outcome for patients that are assigned to physician change.

	So, if you want to know the fixed effect estimator for Beta J, you just take all of the patients that are assigned to Beta J. Since they’re randomly assigned to Beta J, you take the average outcome for those patients and that is our estimator for Beta J in the fixed effects model, okay?

	In the Empirical Bayes estimator, we have the fixed effect estimator and we shrink it. This is called a shrinkage term. This is because if we assume the mean Beta J is zero, we just shrink it towards zero.

	You see all these functions have Y. This kind of vector Y which is the entire vector of data that we have. This shrinkage estimator uses all the data, okay?

	So, the key thing to kind of note here is that the fixed effects data estimator throws away all of it. If we’re interested only in Beta J, we throw away the data for all of the other physicians. We don’t use them at all.

	In the Empirical Bayes estimator, we used all of the data to form the shrinkage and this kind of then allows us to kind of form another estimator—this Empirical Bayes estimator—that adjusts this fixed effects estimator, all right?

	So, which one should we use? They’re kind of different answers to the same question. 

	Now note, if we had infinite data, the fixed effect estimator would be the same as the Empirical Bayes estimator because we wouldn’t have to shrink the data at all. So, that’s one thing to know.

	Now if we’re only interested in one parameter—say Beta One—then we might specify. It all kind of depends on what our objective is. Whether we use the fixed effect estimator or the Empirical Bayes estimator comes down to the objective of our estimation.

	If we’re only interested in one parameter, then we might specify a lost function such as this. We’re trying to minimize this lost function. If there’s a true Beta One and we have some sense of we want our estimated Beta One--or Beta One hat to be as close to beta One as possible--we don’t care about any of the other betas. Then we might kind of specify a lost function like this.

	If that’s the case, then the fixed effect estimator will give us the optimal answer. So, we would use a fixed effects estimator if we only care about Beta One. That means we would throw away all the other data for patients assigned to other physicians and just use the fixed effects estimator.

	But if we’re interested in multiple parameters, we’re estimating the whole set of parameters—the whole set of value-added for all of the physicians J—then we might specify a loss function like this which is the kind of averaged overall of the physicians. What is the loss function that we’re having for each of these physicians? 

	In the literature, this is known as compound risk. Minimizing this kind of risk or minimizing this compound risk loss function is called a compound decision problem.

	Now note, all of these are frequentist objectives. You might of heard of a difference in philosophy between kind of frequent statisticians and Asian statisticians. 

	We are interested in estimating parameters with frequentist interpretations we might choose Empirical Bayes methods if we have an objective that we care about multiple parameters at the same time.

	So, it’s kind of a misconception that we would just do Empirical Bayes. You have to be a Bayesian kind of statistician. It’s not true. We have the same kind of interest, same interpretation of parameters. But we just actually are interested in multiple parameters. That would kind of then allow us to take a compound risk function approach that we’re trying to minimize.

	So, the theory behind why we would use Empirical Bayes when we’re interested in multiple parameters was laid out decades ago. Basically, there’s this paper—James & Stein, 1961—which analyzed this linear shrinkage that I described earlier—which shrinks the fixed effect linearly.

	This paper showed that as long as we’re interested in at least three kind of value-added parameters, then this thing will outperform the fixed effects estimator. By “outperform”, it means that we’ll have a lower account compound risk for this if we have at least three physicians that we’re interested in. We’re going to have a lower kind of average loss over those three physicians than if we were to use a fixed effect estimator. 

	It’s an important concept because here—if we have any statisticians here—it’s similar to the idea of a bias versus variance tradeoff where we kind of know that this fixed effect estimator is unbiased, right? There’s no kind of expected difference between kind of the true beta and the fixed effect estimator.

	But because we’re shrinking these fixed effects—we’re shrinking them towards zero—we’re introducing bias. So, Empirical Bayes estimates are biased relative to the truth. They’re biased towards the mean of the kind of distribution of Beta J. But they have better performance. What do we mean by better performance?

	What we mean is that we have a lower cost function. So, we take the mean squared error here. We expect a mean squared error of this kind of estimator to be better, to be lower when we use Empirical Bayes as relative to a fixed effect estimator. This is kind of a bias variance tradeoff. So, even though we have some bias, we have better performance. 

It’s therefore, kind of useful to kind of use Empirical Bayes shrinkage when we’re interested in the performance of this estimator over many units. This has been called this idea of borrowing strength from the end ensemble. The reason why it performs better is because we’re not throwing away data. We’re using the rest of the data to form better kind of ideas of what we should shrink to or it’s also been called learning from the experience of others to see how patient outcomes varied with other physicians allows us to kind of add some shrinkage when we have finite numbers of observations to kind of improve the performance for a few set of physicians, okay?

Okay, so now the philosophy of random effects. Remember the “random effect” definition is, “a set of random variables with Distribution G.” So, how do we think of this Distribution G?

Now a literal view of thinking about it is you have random units that are drawn from a larger population of units. But this is somewhat unsatisfying depending on the context. You might think of this when you’re thinking about physicians when there’s potentially tens of thousands of physicians to select from. That might approximate the large population.

But when you’re thinking about a hospital or the number of schools in a city, the population of hospitals that you could draw from is not infinite. So, it’s a little unsatisfying to view this literally.

So, I just want to highlight there’s another pragmatic view which is even with a fixed number of units such as VA hospitals, Empirical Bayes allows us to perform better behaving estimates and allows us to kind of make useful insights, okay?

Just what I stated earlier with the James & Stein result. Even if you have three physicians that you’re interested in, you’re going to get better performance in a frequentist sense when you use Empirical Bayes. This doesn’t kind of require us to imagine these physicians or units being drawn from some infinite continuous distribution. 

So, to kind of provide further kind of backing of this kind of view, this distribution can be discreet. It doesn’t have to be continuous. You might kind of view this continuous modeling of G as a useful approximation just because we have some parametric models of distributions that are continuous that might fit discreet distributions fairly well.

It allows us to kind of make the best set of predictions given the data and ask other important policy-relevant questions that might could be illuminated by G which I will talk about later.

There’s a distinction between fixed effects and random effects in this setting that is not about the correlation of covariance with the effects. So, this is kind of in contrast to what you might have learned in your basic grad school econometrics and a little bit in contrast to what was discussed earlier in the fixed effects versus random effects lecture because in that context, we were interested in the effect of some treatment.

Here we’re not. We’re interested in the value-added itself. You can think of these random effects as being correlated with other covariance. There are things such as correlated random effects that you could use and what you’ll see kind of in the rest of this lecture is that we are using fixed effects and we’re shrinking them.

So, the fixed effects are not correlated. Fixed effects don’t have to be uncorrelated with the x’s. If we’re using the fixed effects as a starting point, we’re applying shrinkage methods from those fixed effects. 

All right, so I’m going to spend some time talking about the practice of Empirical Bayes. Now shrinkage depends on the Distribution G which is unknown. So, Empirical Bayes—the world “Empirical” in Empirical Bayes—involves plugging in the estimates of G from the data.

So, we’re going to use the data to get our best guess of what this G might be and we’re then going to use this in a Bayesian kind of framework. There are parametric and non-parametric methods of approximated G.

So, starting from a very simple and nautical (SP) parametric normal/normal model, we can think of estimates and their corresponding errors. You can think of them as fixed effect estimates from an OLS model. They could also be from an IB model.

So, all of what we discussed previously in other cyber seminars’--different ways to find estimates--those all can be fed into an Empirical Bayes framework. So, these are some sort of estimate that we have.

There’s a Beta Hat J and we have some standard error that we know from our estimation. These are for a group of units J. We can assume in this very simple setup that there’s a normal, normal hierarchical model that is that the betas are pulled from a normal distribution and that the beta hat’s--conditional on the betas—are distributed normally as well. That’s just kind of the central limit theorem.

	So, if we have enough kind of observations for the central limit theorem to kick into play for each physician, then you will have a normally distributed data hat to show on beta.

	So, G is called a mixing distribution because first, we’re going to draw from this distribution and then we’re going to add in this distribution for each Beta J. This thing here is called a mixture. The set of the beta hats is a mixture distribution where the beta hats kind of involve kind of both the variation from their original G distribution where the betas are pulled from, as well as noise from the estimational (SP) procedure. That’s called a mixture distribution.

	So, the kind of idea or the kind of process of estimating G is called deconvolution. We’re going to take these estimates—which we call beta hats—as well as their standard errors and we’re going to use those to get an idea of what G is. That’s called deconvolution.

	If we have an idea that the underlying Distribution G follows a normal distribution, then this is a parametric deconvolution and we only need to deconvolve that using two parameters of G because it’s a normal distribution. These are called hyperparameters because first, these are the parameters that kind of determine the parameters Beta J. These hyperparameters in a normal distribution are just the mean and standard deviation. 

	There’s a common approach to estimating these normal hyperparameters which is that our best guess of the mean of this distribution is just to take the mean of the estimates that we have. Our best guess of the standard of the variance of this distribution is to take the variance of the estimates and to subtract out the variance that would be implied by this sample here. So, you essentially just take the variance of the beta hats and then kind of subtract out the variance that’s implied by the standard errors for each of these estimates. 

	So, once we have these hyperparameters, there’s a very kind of clean theoretical shrinkage that we can have in a normal model. This is this. The shrinkage is kind of laid out here.

	What we have here is what’s called a kind of noise to ratio, so our signal-to-noise ratio where we have signal in the numerator and we kind of have the combination of both signal and noise in the denominator. The more signal that we have, so that higher weight we’re going to place on these beta hats. The lower signal that we have, the more we’re going to shrink this towards the mean, okay?

	So, in other words, if we had infinite data, we would have very strong signal of these betas from the beta hats. This kind of signal-to-noise ratio—or the signal to overall kind of signal plus noise—would be close to one. The shrinkage would approach one. Therefore, we would just kind of use the fixed effects estimator. There wouldn’t be no shrinkage.

	Now I also want to kind of take a step back. There’s a very kind of what I view satisfying linear regression interpretation of this. That is we can interpret this shrinkage as the coefficient in a linear regression if we kind of knew the truth and we put the truth on the left-hand side of a regression. You put the estimate on the right-hand side of the regression.

	If you knew the truth and regressed it on the estimate, we would get a coefficient which is the same as the shrinkage. You could see that because the numerator here’s the covariance between the truth and the estimate. The denominator is the variance of the estimate.

	So, in this interpretation, we have the benefit of linear regression is that among the class of linear functions, our coefficient lambda is the thing that will minimize mean squared error if we are trying to, yeah. It will minimize mean squared error for the expectation of the truth given our estimate.

	In this whole, this does not require any assumption of a normal G. So, even though I’m motivated in a normal kind of model—a normally distributed kind of G—this kind of result which is this is going to help us improve mean squared error. In fact, it’s the optimal estimator conditional on a linear model. That still kicks in even if the underlying G is not normal.

	In Empirical Bayes, this is kind of if we knew the truth, if we knew the sigmas—which we don’t—we could only kind of estimate the sigmas. So, we kind of plug in these sigma hats in place of the sigmas, then we’re kind of in the world of Empirical Bayes. 

	So, this is kind of our Empirical Bayes estimator of the mean squared error minimizing Beta J would pull again kind of our estimate of sigma of the normal distribution.

	Okay. I’m now going to talk a little bit about some extensions. So, previously, I sat out a very simple model where there were no covariance and patients were as good as randomly assigned. 

	We can easily account for a covariance where you might need these covariance for random assignments. So, only conditional on these covariance. You might have a quasi or random assignment. 

	But you can also incorporate the covariance for the unit. So, we know not just the physician identifiers, but we might know things like Physician H. We might know the physician gender. 

	We could also observe things if we’re interested in providers overall—not just physicians. We might kind of be able to classify physicians in certain groups.

	So, in the same hospital, we might observe providers that are physicians and providers that are nurse practitioners. So, we can use these covariance in shrinkage. We would just incorporate that by shrinking our fixed effects to different means.

	This is kind of laid out here. So, we can just now account for this by considering different distributions of G depending on the covariance that we have for a given unit. In this simple kind of model here, the mean of the Distribution G is determined by these covariance.

	If we have that, then we essentially shrink the posteriors to different means. So, if we had a provider that’s a nurse practitioner, we would shrink the fixed effect to a nurse practitioner mean. 

	If we had a provider that was a physician, we’d shrink that physician’s fixed effect to a physician mean or we could shrink them to means that are dependent on the physician age, or other physician characteristics.

	So, this is an example from the literature. It’s outside of healthcare, but this is in a paper that’s studying school value-added. If you had random assignment of students to different schools, what would the effect of that school be on that student’s performance?

	What we have here in the light kind of hollow bars are the estimates for charter schools—which are in red—and for Boston public schools—which are in blue. The solid bars is the histogram of the shrunken—the posterior means of these value-added estimates.

	Finally, they’re able to fit a prior distribution which is kind of the mean. This is the G that I’m talking about. If you assume that these charter schools and public schools are pulled from the same G, then this is kind of what you would have here, okay?

	Now while I’m showing you this second slide kind of fits in with what I showed you earlier. Now you can assume that they’re being pulled from different distributions. If they’re being pulled from different distributions, you have two separate G’s—one for the public schools and another for the charter schools.

	When you do this, you could see that the blues are clearly on one side of the distribution and the reds are clearly on another side. So, it really makes sense to fit two distributions for that.

	When you do that, you improve the performance of these value-added estimates. They’re the mean squared would be much lower.

	Okay. Another way that you can extend Empirical Bayes is to use it in bias correction. So, so far, I’ve only showed you kind of how to use one estimate of Beta J. 

	Sometimes you might have two estimates of Beta J—one from a more observational design which might be biased, but is very precise because you have a lot more observations in this observational design. So, you can call these OLS estimates.

	This might be distributed with standard error with variance that’s smaller—relatively small, but it has a bias term VJ—and you might also have some estimates that are unbiased, but noisier. You can call these IV estimates where you would have a larger standard error, but you don’t have the bias.

	Now if you have these two estimates—Beta OLS and Beta IV—in our first year econometrics, we learned that we can do a Hausman test. We could test whether they’re statistically different. If we do a Hausman test and we find that OLS is different than IV, the standard thing in first-year econometrics is to say we should just use IV because OLS is biased.

	But what this is kind of showing here is that we might not want to throw away OLS if we’re interested in means squared error. If we’re not only interested in bias, but we’re interested in both bias and variance, then the mean squared error framework, we might want to use both. 

	This paper kind of shows that you could kind of have an Empirical Bayes posterior—a means square error minimizing posterior—that uses both Beta OLS and Beta IV to kind of form something that kind of borrows from both. It’s a hybrid approach and together it’s stronger than using either one.

	Okay, all right. One other thing I want to say as an extension is normal transformation. So far, I’ve kind of described Beta as being drawn from a normal distribution. That might not fit reality so well if our outcome variable, for example, is not normally distributed.

	So, this is a very kind of classic paper—Efron and Morris in 1975. They’re interested in how many hits among baseball players that you might have for the remainder of the season when you have so many bats and how many hits out of those bats will you have.

	You might have some idea of this based on their past performance. You want to form some prediction of what that’s going to look like in the future. They’re able to transform this into a normal distribution using this kind of formula here.

	So, when you do this—even though H is not distributed normally—when you kind of do H tilde which is some transformation of H and N, this is approximately normal with standard deviation one. You have this parameter Beta J which is also going to be normally distributed if you apply this transformation on the probability of getting a hit for a given path.

	So, now you’re back to this normal/normal model and you can deconvolve again to find G in terms of the mean and the standard deviation of a normal model, okay? This just helps us kind of get back to kind of a very classical model when we have a data generating process that generates data that aren’t necessarily normally distributed.

	We have also an extension in recent years of non-parametric G. So far, what I’ve described is getting these parameters of a normal distribution. The mean is the standard deviation of the normal distribution.

	Sometimes we might have distributions that are more complicated than a normal distribution. We might have a massive outlier somewhere and there’s been some recent advances to think about some more flexible forms of G that aren’t in a classical distributional family.

	So, here is an example from Gu in 2022 where she creates a kind of a mixture of three normal distributions. So, you have a mass of people here, a mass of people here and then the main mass in the middle.

	This matters because if you assume that they were normally distributed in a single mode or with a single kind of, yeah, a single mode, you would shrink everybody to the middle, right? You would shrink people and the more they are kind of an outlier, the more you would shrink.

	You would shrink them linearly. So, the farther they are from the mean, the more you shrink back to the mode, okay? 

	But if you have this other G which you’re able to estimate flexibly, then you would shrink people in different ways. There’s some people that you might actually shrink further out. If they happen to be here close enough to this mode here, they’re going to be “shrunken”, but towards a mode that’s outside that’s actually farther away.

	So, this would kind of improve the performance of the underlying Distribution G is not a simple, normal distribution. There are a couple of techniques that we can now use using R packages and they use different kind of ways of approximating G. 

	One is to approximate G with flexible spines which is just based on this Efron paper in 2016. We’re specifying G actually as the distribution of the Z scores which is the beta divided by the standard error for both of these methods.

	In this method by Efron, G is approximated by flexible spines. This other method—that’s actually based on older theory from 1950—we have a way to kind of approximate G by discreet distribution without those K mass points.
	Here are the R packages here and you can kind of read more about those with these references.

	This is an illustration of how you might use this. So, in the Efron method, you have the underlying data, the underlying estimates. In this case, it’s a paper about discrimination by large employers. You have the histogram of the estimates and you’re trying to deconvolve these to find an underlying G.

	When you use Efron’s method, you find that distribution is not quite symmetric and does not follow a normal. If you were to use this other NPMLE method, you’d have discreet points and all of these discreet points are actually above zero.

	So, this distribution of estimates could be generated by a true underlying G where all firms discriminate against black applicants to some extent. Some might be very close to zero, might be at zero. But there are none that discriminate against white applicants versus black applicants.

	Okay. So, I’m running a little short on time. I want to still talk about these kind of connections because I think it helps us with understanding the philosophy of Empirical Bayes in some of these recent other developments and applied research.

	One big one is machine learning. So, Empirical Bayes methods are closely related to machine learning particularly the ones that use what are called regularized regressions. These are regressions that penalize when there’s a certain kind of over dispersion in parameters. 

	The reason why they’re closely related, I think it’s quite intuitive. It’s that both of these are trying to fit many parameters. In machine learning, you’re trying to form very granular predictions that use a large number of characteristics, right?

	So, you see so many things. You see a lot of features of the data and these features might be relatively large relative to the number of observations that you have in the data.

	Here, in Empirical Bayes, we have a lot of parameters. We might be interested in a lot of physicians. The number of observations we have per physician is not that large.

	So, again, the number of parameters or the number of features that we’re trying to account for is relatively large relative to the number of observations we have overall, okay?

	If we go back to the very simple case of a normal, normal model with N patients for physicians—so this is kind of written out here again—remember one way to kind of estimate this is we could just have a bunch of fixed effects. We use those fixed effects.

	The problem is those fixed effects are quite noisy. Some physicians might appear to have high value-added by pure chance, right? Because we don’t have that many patients per physician. 

	So, that problem of using that fixed effect estimator—which has more mean squared error—is akin to this problem of overfitting which is a problem that machine learning seeks to solve. So, instead, if we use Empirical Bayes, the goal is to kind of use the entire ensemble of betas to form a better prediction with a lower mean squared error.

	One concept here now is when we have posterior distribution of what we think beta might be, there are different objects that we can look at. One is the mean. One is the posterior mode. If it’s a normally distributed--if we’re looking at the normal model—the two things happen to be the same.

	I want to just introduce this term for the posterior. It’s called an MAP or the Maximum A Posteriori. That’s kind of a term used in machine learning.

	Okay. So, if we kind of follow through with this normal framework—the normal G—if we have a normal G and we kind of plug in these densities, and we want to solve for the MAP—which happens to be the posterior mean—we’ll have this minimization or this kind of objective. We’re trying to minimize this thing here.

	If we kind of simplify it, so this actually ends up looking like a regularized regression. This first part is a normal regression where we’re trying to kind of minimize this is a fixed effect estimator here. This is looking like a penalty term which is kind of this regularization here. 

	So, we have the penalty—P—and a tuning parameter—lambda—which happens to be very similar to kind of this signal-to-noise ratio that we were talking about before in this kind of Empirical Bayes shrinkage under a normal model. 

	So, this regularized regression happens to be known as a ridge regression and this is something within machine learning. In the spirit of Empirical Bayes, ML, oftentimes we need the data to choose these tuning parameters. In this case, it’s lambda.

	Similarly, in Empirical Bayes, we’re trying to deconvolve the underlying distribution and then we’re going to plug that in. So, we’re using the overall data to kind of improve our predictions, okay?

	So, in these data, we’re trying to find these hyperparameters which are similar to these tuning parameters. So, thus, Empirical Bayes is an interpretation for machine learning regularization. 

	So, ridge regression estimates—which are L2 penalizations—are the same as having a posterior means or modes from a model with normal priors. LASSO regressions—or L1—sorry for the typo here—L1 penalizations—these are the same as using the posterior modes from a double exponential or Laplace prior.

	So, it’s useful to kind of think about the implicit Empirical Bayes prior distributions when we’re doing machine learning because it tells us how likely is our kind of approach going to reflect the data generating process. There’s a paper by Abadie and Kassey that shows that depending on the data generating process, some ML models might perform much better than others. This provides us a framework with thinking about, “Well, why might one perform better?”

	Otherwise, it’s kind of like _____ [00:52:04]. It seems unclear. If we don’t know the truth, then we can do both and we actually don’t know which one to pick. But if we don’t know the truth, but we have some idea of the data generating process and the model in which these kind of betas are drawn from, then that would guide us in what type of ML model that we’re going to do. 

	Another kind of approach connection that we have with Empirical Bayes is multiple hypothesis testing and this is because in multiple hypothesis testing, we have multiple kind of betas or multiple parameters that we’re trying to test against a hypothesis. Once we have multiple parameters, we start kind of having problems where that didn’t exist when we only focused on a single parameter.

	Empirical Bayes also kind of deals with multiple parameters and is trying to form some type of approach to improve the overall performance of these parameters. Some of these questions that we can ask are, for example, “Which doctors are in the top quintile of performance?” or “Which VA hospitals are discriminating against black patients?” These problems are called large scale inference problems and very closely related to multiple testing problems. 

	In the interest of time, I think I’m going to kind of skip through some of this. But I think the overall kind of framework that you could fit these in is this idea of a false discovery rate. If we kind of pick a certain P value to classify some doctors or some hospitals as being definitively greater than zero or not, that’s going to lead to a false discovery rate, right?

	The idea is if we knew G, if we knew the underlying distribution—which is something that’s very central in Empirical Bayes—we can know what the false discovery rate would be as a function of this kind of P value. That would then guide us to pick the right P value when we’re kind of using multiple hypothesis testing.

	There’s also a theory that kind of now in a Bayesian framework, we’re trying to maximize some objective of false discovery rate. Really, what that’s maximizing is some loss of Type One error versus Type Two error and we can pick the right false discovery rate if we kind of are explicit about the cost of a Type One error versus the cost of a Type Two error. 

	All right, so just to wrap-up, I’m going to describe two really brief VA applications that I’ve used and one is a paper that I’ve written to kind of look with co-authors to look at what is the effect of being treated at a VA hospital versus a non-VA hospital. 

	So, the main paper is kind of looking at this on average. We find that VA hospitals have a significant reduction of mortality in an IV design and this holds even if we’re kind of using OLS. It appears that sicker patients are sent to the VA as opposed to non-VA hospitals which is why the OLS estimate is lower in magnitude than the IV estimate.

	The reason I’m bringing this up here is because we might be interested in how this might vary across different VA stations. There’s more than 100 different VA stations. If we had enough data, we could do this experiment separately for each VA station, but we don’t have that many data when we’re looking at each of these 100 VA stations.

	So, in this paper, we’re using an Empirical Bayes approach to kind of fit a distribution of posteriors for each of these 100 VA stations and we find that for each of these VA stations, this mortality effect happens to be a reduction mortality.

	So, this is quite a stark finding. Not only is the average effect big, just the variation is big enough such that none of the 100 stations that we look at in an Empirical Bayes framework happens to increase mortality relative to the non-VA hospitals. Instead, this posterior distribution is all to the left of zero here.

	Another setting that I’ve used in Empirical Bayes is if you’re interested in provider effects. We find in half of the paper we’re looking at the average effects between nurse practitioners and physicians when patients are as good as randomly assigned to nurse practitioners versus physicians. We find that on average, nurse practitioners have lower productivity meaning that they use more resources and they get slightly worse outcomes.

	But then you might ask, “What is the distribution of productivity within professions and how does this overlap between professions?” This is kind of a de-involved distribution where we’re using a non-parametric method here. We find that even though there is a gap here where this is kind of I’m plotting reverse productivity—in other words, if you were to monetize the amount that they’re spending and the outcomes that they’re receiving, physicians cost less money on average. 

	But you see that there’s huge overlap in the two distributions. There’s large variation where on the x-axis of the scale where if you’re here, you’re increasing the cost by 50% relative to the mean. We see just a huge variation in productivity within professions which is consistent with prior literature. 	

We find that there’s a lot of overlap between nurse practitioners and physicians. This is something that we’re able to do with an Empirical Bayes framework. 

So, I’m going to wrap-up now. In the conclusion, I want to say that Empirical Bayes methods are providing tools to jointly assess effects across important units by policy relevant units such as physicians and hospitals. 

This increasing granularity of data and the computational tools that we now have give rise to methods that we can now apply to answer some of these interesting questions, and that these kind of compound decision problems, and large scale inference that are made possible by these methods are—I think—very policy relevant because it tells us which units are the ones that which we should intervene upon. What is the underlying kind of distribution of these units? Are the units very different from each other?

I think it would be very fruitful to use for operational and policy leaders in the VA. With that, I’m going to stop. I know I only have two minutes left.

Todd 
Wagner:	Thanks, Dave. That was great. But I’ve been answering just a couple of little questions in the Q&A, but nothing big. I think you were extremely thorough, so I appreciate that. 

	I’m just going to give it a sec and see if anybody types any questions. I’ll read it to you. 

	But so far, I just want to point out that the two papers that you talked about at the end, you didn’t put your citations. But both can be found on NBER, right?

Dr. David
Chan:	Yes. So, the slides should be available. I have citations here. For any paper that I cite during my presentation, you should be able to find it here.

Todd
Wagner:	Perfect, thank you. Rob, I think we’re going to turn it back to you because I think we’re right at the top of the hour. Thanks again, Dave, for a great presentation.

Robert
Auffrey:	Thanks, Todd. Attendees, when I close the webinar momentarily, a short survey will pop up in a separate browser window. Please take a few moments and answer those questions. We count on them to continue to provide high quality cyber seminars such as this one.

	With that, I’ll just go ahead and end. Thank you, Dr. Chan.

Dr. David
Chan:	Thank you.
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