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Moderator:	Hi, everyone, and welcome to today’s cyberseminar on Interaction Terms in Nonlinear Models. Today, we’re thrilled to have Edward Norton with us. Dr. Norton is a professor in both the Department of Health Management and Policy and in the Department of Economics at the University of Michigan. His research interests in health economics include long-term care and again, pay-for-performance, obesity, and econometrics. 

In addition to his affiliations with the University of Michigan, Professor Norton is a research associate at the National Bureau of Economic Research. And without further ado, I will hand it over to you, Dr. Norton.

Dr. Norton:	Great. Thank you very much for the introduction. It’s wonderful to be back here doing another cyberseminar. I wish I could be there in California in person and look forward to the day when we’ll be able to travel a lot more and meet again in person. But for now, happy to do this in an online format.

So, today, I’m going to talk about Interaction Terms in Nonlinear Models, one of my favorite topics. Health services researchers use interaction terms in models with binary dependent variables a lot. Let me just give a couple quick examples. Trying to predict mortality, for example, as a function of age and comorbidities and perhaps their interaction because the effect of comorbidities may vary with age. 

We’re looking at readmission rate, which might, from, say, a nursing home to a hospital, which might depend on the nursing turnover rate in that nursing home, whether they have a continuing quality improvement program, which may be a lot more effective if the nursing turnover rate is lower. Therefore, you’d want to include the interaction.

And finally, a common modeling approach that has interaction terms is difference-in-differences where you have treatment compared to control and post compared to pre and, of course, their interaction to see if there’s a difference for the treatment group in the post period. 

So, these are quite common models. But interpreting these in nonlinear models is much harder. And our intuition from linear models in ordinary least squares can be misleading. For example, so, to get to the punchline; the magnitude of the interaction effect is not simply equal to the magnitude of the coefficient on the interaction term in, say, a logit or probit model. The magnitude, however, will be conditional on all the independent variables. Or put another way, it’ll depend on the underlying probability of the outcome happening.

The statistical significance of the interaction term is not equal to the Z statistic on the interaction term in the logit or probit model. 

And finally, the sine may be different, and I’ll give two examples of that today when I go through some real-world examples. 

So, again, nonlinear models make this just a lot harder to interpret. 

So, what I want to do first is go through a simple ordinary least squares linear example with an interaction term and just make sure we’re all up to speed on how to interpret interaction terms in those simpler models. Then, quick review something that’s very different about nonlinear models for marginal effective as single variable, not interacted. And then, put those ideas together and go through two examples with logit models that do have an interaction. I’ll show graphs, show coefficient, show how to compute the interaction effect. 

I’ll briefly present Stata code for those who use Stata. And then, assuming we have time, I’ll talk about some more advanced topics that build on the basics. 

Okay. Before going any further, I want to have this poll question just so I get a better sense of people’s backgrounds. So, if you can answer; what best describes your comfort with interaction terms and logistic regression? So, do you teach quantitative methods and therefore; are very familiar with these ideas? Or perhaps you write papers that use interaction terms. Or do you read papers that use interaction terms but don’t really use them yourself? Or finally, what are interaction terms? 

So, if you could just answer the poll question and in a couple of slides, we’ll come back and just review where we are today.

Moderator:	Okay. And the responses are slowing down. I’m going to go ahead and close that poll right now.

Dr. Norton:	Okay.

Moderator:	And what we have is 5% say, “I teach quantitative methods, am very familiar;” 50% say, “I write papers that use interaction terms;” 38%, “I read papers that use interaction terms;” and 3% say, “What are interaction terms?” Okay, back to you.

Dr. Norton:	Great, thank you. Okay, well, if I get stuck on anything, I’ll call on the 5% who teach this and they can help me out.

Alright. Let’s go through a simple linear regression model because it is easier to compute marginal effects and interaction effects in linear models. We can look at the coefficient on the interaction term; it’ll give us a sense of the magnitude and the sine and statistical significance. 

So, the example I’m going to use should be very familiar to people who use Stata. It’s this little toy data set having to do with automobiles from the year 1978. There are only 74 observations. This is a data set that’s useful for teaching purposes, not really for research. 

The dependent variable I’m going to use is miles per gallon so, it’s very continuous. The mean value - remember this is 1978 - is 21.3 and it ranges from about 15 to 40 or so. And I’m going to make this a function of weight, which is continuous, and clearly, we expect heavier cars to have lower miles per gallon. And a binary variable of whether the car is foreign or domestic and their interaction.

Before I actually show you a graph of what this looks like, I want you to think for a moment. Suppose I just regress miles per gallon on weight, a continuous variable, nothing else. What we get is a single straight line in terms of prediction to fit the best straight line through the data. If I then add a dummy variable for foreign, the predictions would be two parallel lines; one line for foreign cars, one line for domestic cars, and they would be parallel because that model would assume a constant effect of weight on miles per gallon.

If we then allow an interaction that is multiplying weight by the dummy variable foreign, we’ll get two lines but they’re no longer forced to be parallel. Hopefully, will fit the data a little better. 

So, let me show you the results graphically first and then, I’ll show you the numerical numbers. So, you get yourself oriented, the X axis is weight going from 0 - which is obviously way out of sample - to 2.5 tons up here. Most cars are sort of at a minimum one ton and going up to just over two tons. 

The blue dots represent domestic cars; the red dots represent foreign cars. And so, you can see the blue line here, which starts lower and ends higher, is the line that runs through the blue dots, or the domestic cars, and the red line runs through the red dots. 

So, what we’re going to get from this regression is a constant term that’s going to be about almost 40. That’ll represent the predictive value of miles per gallon for a car with 0 weight, which certainly makes no sense. 

We’ll get a coefficient on weight, which will be negative, and that will indicate the marginal effect of weight on miles per gallon for domestic cars.

There will be a coefficient on the dummy variable foreign, which will indicate the difference between predictive miles per gallon here on the Y axis - again, way out of sample. 

And then, the thing we’re most interested in here is on the interaction term. It’s the difference in these slopes. So, clearly, the red line has a steeper slope, it’s more negative. It looks sort of roughly twice as steep, perhaps. So, we would expect that the coefficient on the interaction term would be, ballpark, the same size as the coefficient on the main coefficient of weight.

So, let’s go look at the numerical results here. We have a constant term of almost 40 - again, that’s right on the Y axis way out of sample. The coefficient on weight is negative. That’s a really small number. That indicates the marginal effect of one additional pound of weight on miles per gallon, so, it is small. There’s a difference between foreign and domestic cars of nine miles per gallon but that only applies for cars of 0 weight.

And then, this is what we’re most interested in; it’s the interaction term minus .00445. Sorry. 

So, what does that actually mean? What does that number mean in this linear regression? It is the marginal effective weight is lower for foreign cars than for domestic cars by about a half of a mile per gallon for every 100-pound increase in weight. If you multiply this by 100, you get .445, just almost a half. 

And the key thing here is the difference in the slope; the difference between the marginal effective weight for domestic cars than for foreign cars. Another way to say this is the marginal effective weight for domestic cars is -.006, we’ll call it, and the marginal effective weight for a foreign car is that main effect and then, add on this interaction effect, which makes it more negative, more steeply sloped.

So, we can look at this coefficient and it tells us something directly about the magnitude and we know that the sine of this is negative. That is, more weight lowers the miles per gallon and it does so at an even faster rate for foreign cars than for domestic cars. And statistical significance at conventional levels such that its T-Stata is over about 2 in absolute value so, it’s statistically significant.

Okay. Hopefully, that was a review. Now, I’m going to do something that looks a little bit like overkill but this is really mathematics for foreshadowing because it’s going to indicate what’s coming later. And this approach is going to be really important when we get to harder models.

If you’re familiar with these interaction models - I’m going to skip back up for a second - you might - if you’re familiar with these, probably your eye kind of jumps down here to the interaction, you say, “Aha, I know exactly where to look. I’m interested in the interaction term. Boom, I’m just going to look right here, -.00445, that’s the answer.” 

Another way to get that number is to take two derivatives. You may not have realized it but in the back of your mind, you’re actually doing this. Because the interaction effect is the change in two variables in how that affects the dependent variable.

So, the marginal effect for a single variable is the derivative or the slope. So, the marginal effect of weight would be beta-1 plus beta-1/2 times 4, as we saw in a previous slide. 

And then, if we take the derivative of that with respect to the other variable, foreign, we just get beta-1/2. So, the interaction effect is beta-1/2. The math works out very nicely in this linear case, everything else falls away. We’re just left with the coefficient on the interaction term and life is good.

Keep in mind, though, this process of taking two derivatives is going to lead us to a more complicated answer when we have more complicated models. 

Let’s think about this in a slightly different context. Suppose we had two binary variables; perhaps post versus pre and treatment versus control and we were doing a difference-in-differences model of the very simplest kind. We only have two periods; either treatment or control. 

Then, this very simple diff-in-diff model, we’re going to have the same kind of setup where you have the post-dummy variable, the treatment dummy variable, their action, this coefficient beta-1/2. And you can either think about this, again, as taking a double derivative and we get beta-1/2. I like to look at this 2x2 table - or, I guess, 3x3 table - and think about if I ran the model on the previous slide and then made predictions, I would get four different kinds of predictions. For a control observation in the pre period, the predictive value’s beta-non. For a control observation in the post period, it’s beta-non plus beta-1 times post, which is 1. And the difference over time for the control group is exactly beta-1. 

We can go through the same logic for the treatment group and see, we keep adding more terms. The difference pre to post for treatment is both beta-1 and beta-1/2; this extra effect that may apply to the treatment group in the post period. And then, we have two differences here; a beta-1 and a beta-1 plus beta-1/2. We take the difference between those two differences and we get, again, beta-1/2. Doing differences like this is like taking a simple derivative for continuous variables.  

Either way, in these linear models, we end up with beta-1/2 as the parameter of interest to compute the thing we want to know. 

So, just to summarize; in ordinary least squares, interaction effects, you can figure out by just looking at the coefficient on the interaction term. It’s beta-1/2 using the notation on the previous slides. Magnitude and sine are straightforward. The significance is just the T-test. Life is good.

Okay, all that’s about to change as we move on to nonlinear model. So, before we jump into the deep end and do interaction terms in nonlinear models, let’s stick with a single continuous variable and think about how the interpretation of that is very different with logit or probit than with the linear model. 

So, if you’re familiar with logit and probit, we know that the marginal effect of the continuous variable is not constant. It depends on what the underlying probability is of prediction.

So, let me go - I think this will be easier to show with a specific example. So, I took the automobile data set and I took miles per gallon and I dichotomized it. So, I made it equal to 1 if miles per gallon were over 25 and 0 if it was less than 25 - less than or equal to 25. So, relatively high mile-per-gallon cars get a 1; relative low mile-per-gallon cars get a 0. And then, ran a logistic regression; this time, just on weight so, a very, very simple model. And this shows the predictive value now; no longer a straight line. This traces out the logistic curve, which is sort of an S-shaped curve, and you see it’s bounded by 01. 

If the weight of the car is, say, already two tons, it’s extremely unlikely to have miles per gallon over 25 and so, throwing some more weight on the car isn’t going to change that very low probability. It’s still going to be about 0. The marginal effective weight is essentially 0. The slope of the line here is about 0. 

Same for a super-light car. A really light car would be predicted to have miles per gallon over 25, although there aren’t very many of them. Adding a little bit of weight isn’t going to make much difference. 

What’s interesting, though, is in the middle, of course, as we go from about 1,500 pounds to 1.5 tons, the marginal effective weight is no longer close to 0; it’s quite high. The probability of having a high mileage car plummets. All of that is the slope; it’s the derivative, it’s the rate of change, and miles per gallon as a function of weight. 

So, this is just a reminder that the marginal effect of the weight depends on sort of the underlying probability. Is it low, medium, or high? And the marginal effect is always going to be highest right in the middle where this S curve is steepest.

Okay. If you’re a more mathematically inclined person, you can get at these ideas, again, by taking derivatives. If you know the functional form of the model you’re looking at, then, the marginal effect of a single variable will be the coefficient on that variable times the PDF - probability density function - of that.

For example, in a logit model, this formula has a very nice functional form. It turns out to be Fx1-F where F is the logistic formula that is 1/1+=/- X beta. Or you can just think about it as key to predictive probability.

One of the nice - this is a little fun fact that I use all the time for making approximations in logit models - is if you want to know the marginal effect of any variable in a logit model, takes its coefficient and multiply by key times 1 minus key and that’ll give you a very good approximation of the marginal effect of that variable where this does not work for probit models or any other models but the math works out very nicely for logit. It’s a useful thing sometimes.

So, for example, if the overall probability is about a half, a half times a half is a quarter; then, the marginal effect of a variable would be about one-fourth of the coefficient on that variable. 

Alright. Now, let’s move on and merge these ideas where we talked about interaction terms and linear models and looking at the difference in the slopes with the idea, also, that in nonlinear models, slopes are changing. And so, it gets a little more complicated. And if we want to compute the interaction effect, we would need to do a full double derivative.

Again, if you’re the mathematical type, I’ll let you look at this or re-derive this formula in the privacy of your own home. This is taken out of one of our papers; I think it’s the Health Services research paper. That let me just say the point of this is that when you take a double derivative to get the full interaction effect, you end up with a mess. It’s no longer a single term. It’s certainly not beta-1/2; that’s what we got with OLS. We got beta-1/2 times something and then, added on this other whole thing. It’s a function of like everything. It’s nonlinear, it’s a mess. And you could imagine that like if beta-1 was the opposite sine of beta-1/2, hmm, maybe we’re going to have some difficulty sining this. 

Also, if you like to think in terms of interacting dummy variables, we can no longer just take the coefficient and use them to make predictions. It would be the coefficient thrown into the CDF; for example, in the logistic model, 1/1+=/- X beta, and things don’t simplify nicely the way they did with ordinary, these squares.

So, the full difference-in-difference formula in a logistic model is no longer just beta-1/2. It is instead this double difference; the predicted value for treatment group in the post period minus treatment in pre-minus control in the post, plus control in the pre period. And it’s this double difference that is the full interaction effect.

Okay. Finally, let’s get to an example using a logit model with an interaction. This is now real data. It’s not the toy data set from before. This uses data from the MEPS - the Medical Expenditure Panel Survey - over a seven-year period. This data set has one observation per person. We just took the annual data. We’ve got over 150,000 people in it. 

And for this example, the dependent variable is binary. It’s; did you have any hospital discharges in that year. And 7.7% of the sample of adults did have a hospital discharge that year. And we’re going to make this a function of just two variables. I fully understand this is not a great model. There are lots of missing variables. This is for the purpose of teaching. It’s much easier to graph if we just have the two variables.

So, we’re going to make this a function of two things; one, a dummy variable for whether the person has any functional limitations at all, yes or no. About a quarter of the sample does. And the other is a continuous health measure; the physical components of the SF12 survey. So, think of this as a number that, theoretically, could go from 0 to 100, although most people are in the 40 to 60 range. So, it’s a continuous measure. A higher number indicates better physical health, lower number is worse health.

So, if you’re in better health, you have a higher PCS number here, you would be less likely to have a hospital discharge. If you have any limitations, we think that you would be more likely to have a hospital discharge. And then, we want to allow for the possibility that the effective limitations depend on your underlying physical health or, equivalently, allow for the possibility that a change in your physical health measure would be - have a different effect, depending on whether you have limits or don’t have limitations.

Okay. So, did the person have a hospital discharge; yes or no, as a function of the dummy variable and the continuous variable? Again, I’m first going to graph this so we get an idea in our heads of what the answer is. Then, we’ll go and look at the coefficients. 

Okay, let’s orient ourselves here. On the X axis, again, we have the continuous measure of this physical health component of the SF12. Most of the data are going to be in this region from 40 to 60 so, keep that in mind. We know that the overall predictive - or the overall mean of the dependent variable is about 7.7, which is also consistent with most of the data being here. 

There are, however, a few people whose values go down as low as about 10. We see that people with an activity limitation are - have a higher predictive probability of any hospital discharges and that as your physical health component increases, your probability of hospital discharge decreases. So, all of this corresponds to our intuition. 

We also see that these curves are not straight. Each of these is part of an S curve. And if we went way out of sample to the left, it would go up and then, flatten out eventually just below 100%. 

What we’re interested in here in terms of understanding the interaction effect - that is, does the effect of physical health differ for those with or without an activity limitation? We want to look at the difference in slope. 

First, let’s look right here kind of between 30 and 40. To my eye, these two lines look plausibly parallel. So, if all the data were right here, these two slopes are the same, that would indicate no interaction effect. 

If we go down here where there are very few data points, we see that the slope of the upper line is higher than the slope of the lower line. That is; the effect of increasing physical health, although it decreases the probability of hospitalization, it does so a little slower for those with an activity limitation than those without. So, here, the interaction effect is positive. This slope, the higher slope’s a little higher than the lower slope.

Over here at the upper end, though, we see it goes the other way. The slope of the upper line is a little lower, it’s a little more negative. And therefore, in this region, you would say that the interaction effect is negative. The difference in slopes is such that the higher line has a lower slope than the lower line.

Okay. Now, where is most of the data? Most of the data is over in this part of the curve; therefore, I’m going to assume that if we calculated the interaction effect for every observation, most of the observations are over here. Most are going to have a negative interaction effect. Yes, some will have positive, most will probably have negative, and it’s going to be pretty small, okay? That’s what we can learn from this graph, which I think is very helpful. Okay? 

So, it’s helpful to graph this out, look at the difference in slopes, see how it varies across the graph, think about where most of the data are, and that’s going to lead me to predict - well, I’ve also seen the answer - but still, as a result of this, I’m going to predict that the interaction effect is slightly negative. Okay?

So, now, let’s look at the results - this is from the simple logit mode where any discharge was the dependent variable. I gave a talk a year ago about how to interpret logit models and marginal effects and so forth. I want to focus here on the coefficient on the interaction term; the .014. I think giving you a prediction that the interaction effect was negative and yet, this is a positive number, okay? 

So, right now, I’m not looking too good. I’m not going to spend a lot of time trying to interpret these coefficients, partly because that’s not the focus of the talk and partly because when you have an interaction, the interpretation of the main coefficient also gets more complicated. 

Alright. So, now, we look at the coefficient and now I’m thinking, “Oh, positive interaction effect even though the graph, I thought maybe was going to be negative. Hmm, what should I do?” We have some slightly complicated Stata code, which I will make available to anyone who uses Stata. You can computer the average interaction effect - average over the whole data set - using, basically, the margins command and some other qualifying comments here. And then, Stata will do all the work for you.

Aha, look at this. We’ve got a negative number. So, it does turn out that the interaction effect, when averaged over the whole data set, is negative. It is very small and it is statistically significant; got a Z statistic of -6.8. 

So, this is one example of a case where the actual interaction effect is negative and you wouldn’t know it from just simply looking at the regression output on the previous slide. If you’ve looked through the graph and thought about where the data are, you might’ve been able to predict it. But that is one interesting result.

Want to go to a second example - oh, sorry. So, how would I put this in words? I would say that the marginal effect of an improvement in physical health is slightly lower for those with limitations than for those without when averaged over the whole sample, with a reminder that most of the sample is in the range of a PCS score between 40 and 60, at least in this particular data set. Okay? So, that’s how I would summarize the results.

Now, I want to go to a second logit example; again, using MEPS, again using the same dependent variable. The only thing that’s going to change here is Medicare coverage. So, I’m going to keep the “any limitations” variable and I’m going to take out the physical health variable and instead, putting this dummy variable, “Do you have Medicare or not?” 

Now, if you know anything about the US healthcare system, you know this is kind of a dumb model because I obviously really should have age in here, age is correlated with Medicare. The point of this is not to have a really good model. The point of this is to have two dummy variables interacted as as a teaching example. So, I’m well aware this is not the world’s best model.

Okay. So, two dummy variables and their interactions. Just like a very simple diff-in-diff model, there are, therefore, basically four different kinds of people - four different predictions will come out of this model. You either have limitations or you don’t; you’re either on Medicare or you’re not.

Let’s look at the graph first. Again, the overall probability is 7.7% so, the overall mean is going to be down here somewhere. 

On the X axis, we have no activity limitations on the left side and with activity limitations on the right side. So, for someone not on Medicare, the predictive probabilities are about, I’m going to say, 4% and maybe 13%. That is; having an activity limitation increases your probability of hospitalization by about 9 percentage points. 

For someone on Medicare, the two predictive probabilities are, let’s call it 8% and maybe 21%. Now, if the effect of having a limitation was the same for Medicare and non-Medicare, then, I would’ve predicted we would’ve gotten this number here, like about 17%. But instead, we get a much higher number; 21%. In other words, the difference between what I would’ve gotten had the effect of activity limitations been the same for Medicare and non-Medicare versus what actually happened is about four percentage points. That’s the red arrow here; about a four-percentage point difference. 

Okay. So, I’ve looked at the data, I’ve looked at the predictive probabilities. I can see here that there’s about a four-percentage point effect of the interaction between being both on Medicare and having an activity limitation.

Looking at the results, we get this big coefficient for any limitation, we get a number from Medicare. It’s also positive, basically indicating that each of these is positively correlated with the probability of hospitalization - uh-oh, we get a negative number here on the interaction term and it’s insignificant.

So, you know, your first reaction is, “Hmm, nothing’s going on and if anything, it’s negative, although it’s really insignificant. Boy, this doesn’t matter at all. What’s going on?” 

Let’s look at the actual interaction effect again, computed by Stata using the margins. Oh, look at that; it’s about four percentage points, .042 is 4.2 percentage points. And it’s highly statistically significant. 

Again, this just goes to show that you cannot look at a single coefficient; you have to do the double derivative or double difference and, fortunately, Stata will do that for you, and much faster. And that will compute the value of the average of the interaction effects over the whole sample.

Okay. So, we’ve been through a couple of examples here with data. Oh, yes; so, how would I use this in a sentence? So, I would say one of two things, which are really equivalent. The incremental effect of Medicare is four percentage points higher for those with any limitations than for those without. Or you could equivalently say, “The incremental effect of having any limitations is four percentage points higher for those on Medicare than for those not on Medicare.” Again, it’s sort of a difference in a marginal or incremental effect from one group to the other.

Alright. Now, I’m going to move on to a couple of more advanced topics. So, a few standard errors; you want to use the delta method, see our paper if you’re the kind of person who likes to understand more about how to do that. There’s really no intuition and I don’t think any point in deriving that here. I always vote to let Stata, or any statistical program, do the work for me.

If you don’t use Stata code, you have like a 30-second time out. If you do use Stata, here are three examples of how to first run a logit model and then, use margins. And these use real variable names from the MEPS data and also, use this thing called piecewise compare with effect. It’s the way to use the margin syntax to actually compute it; it does all the work for you. 

So, if you do use Stata, I would strongly recommend you use these three kinds of Stata codes, depending on whether you have one binary and one continuous or two binary or two continuous variables. Because the syntax is slightly different for the three of them.

Okay. Everybody rejoining me. A couple of things I want to talk about. Bill Green had a really interesting article that came out after ours about interaction effects in nonlinear models. And his point about the statistical - so, if you look at just the coefficient on the interaction term, he says that - I mean, from our standpoint, you should think about interaction terms theoretically first but use statistical tests for building a model and getting the right model specification. And then, basically, do what I walked through just now; is show the reader graphs, discuss the marginal effects, the magnitude of these, and inform the reader about all of this. Very nice article.

Patrick Duhaney in 2012 had another really interesting paper. If you are familiar with the idea of average treatment effect or average treatment effect on the treated or average treatment effect on the untreated potential outcome framework, he showed a really interesting thing; that the treatment effect on the treated is actually always the same sine as the - yeah, that’s this coefficient on the interaction term. 

So, what I calculated up above in those two examples was an average treatment effect that is averaged with the entire sample. It turns out that the treatment effect on the treated is always the same sine as the interaction coefficient. 

Both examples that I showed you, the overall average treatment effect had a different sine than the interaction coefficient. Sometimes it’s the same, sometimes it’s different. It’s kind of hard to predict. But the treatment effect on the treated is actually always the same sine, which is really interesting.

Okay, just a couple more things and then, we’ll wrap up and open this up for questions. 

Alright. I’ve talked mostly about logit and probit; the two examples I gave were logit. Those are not the only nonlinear models out there. There are also order logit and multinomial probit and count models. Those would be the most commonly kinds of other nonlinear models used. 

If you’re doing any of those and if you have an interaction and you want to interpret the results, you need to follow the same logic. And by that, what I mean is; take double derivatives or take double differences. Don’t just look at the interaction term and call it a day, okay? You undoubtedly won’t get the right answer, we’ll misinterpret the results. You need to take double derivatives or double differences to get the correct answer.

Furthermore, if you are doing what’s called a triple-diff model or a difference-in-difference-in-differences model, we look at the difference-in-differences across, say, two different groups, gets even more complicated. Again, you would need to take triple derivatives or triple differences but it all follows the same logic in terms - when you have nonlinear models, you’re going to have to do multiple derivatives, multiple differences, or let your software do the work for you. But you cannot just look simply at the coefficients in a nonlinear model.

Okay. What about linear probability models? And by “linear probability model,” I mean, ordinary least squares when you have a dummy-dependent variable. Some people have very strong views about whether a linear probability model is the best thing ever or a terrible idea that no one should ever use. I’m kind of in the middle on this. I think they can be useful.

So, let’s think about interaction terms. Particularly if you’re fairly new to this and are just seeing this for the first time, you may think, “Oh, my goodness. This is such a mess. Why don’t I just run ordinary least squares, throw in the interaction term? I know what to do, I can interpret it, I can graph it. This is very easy.”

It is simple to interpret. There are well-known problems with linear probability models that may or may not be relevant for your analysis. You often get predictions that are outside the 01 interval; meaning you can predict a probability that has less than 0% of happening or is more likely at 100%. It doesn’t make any sense. And linear probability models will typically assume constant marginal effects as opposed to having a nice S curve, which keeps everything in the 01 interval.

That may or may not be important for what you’re doing. If you only care about an overall average effect and are not trying to make individual predictions, then, often, linear probability model can get a similar result as a logit or probit. The times when they differ a lot is when you have a wide range of one of the variables you’re interacting.

And linear probability models can also be a lot easier if you have what are called “fixed effects,” like individual fixed effects or state fixed effects.

My suggestion is estimate both and compare and see where you get similar or different results. If you’re aiming for an overall average, the linear probability model is probably going to get you something pretty similar, although not always. If you’re doing something more refined or looking at a lot of different sub populations or have multiple interactions, then, they’re more likely to diverge.

Okay. So, in conclusion, interaction terms are more complicated in nonlinear models than in linear models like ordinary least squares. Hopefully, that’s blindingly obvious by now. And it’s not just that you can get kind of misled by the magnitude of the coefficients or that the statistical significance is wrong. You can get the wrong sine. It can appear to have a positive effect when it’s negative or a negative effect when it’s positive, in addition to statistical significance being different. 

If you’re interested in the formulas or additional examples, you can see our papers that are here in the first set of references. Second set of references, I don’t think _____ [00:46:35] put any papers.

Thank you very much for listening. Again, I’m delighted to be back here presenting and I would be also delighted to answer any Q&A questions that have come up. 

Moderator:	Thanks so much for that excellent presentation and I hope you’re ready to answer questions because we have quite a few that have already come in.

Dr. Norton:	Okay.

Moderator:	Okay. So, a couple of questions were actually about whether you had any comparable R or SAS code for getting the interaction effect over the whole data set or if you can point people towards something similar.

Dr. Norton:	I do not. So, just estimating the model in R or SAS should be pretty straightforward. The trick is after you’ve estimated, let’s say, a logit model is how, then, you manipulate the results to get the interaction effect. That takes more work. I do not use R or SAS at a level where I’ve done that kind of programming.

So, but I would say if someone does figure that out, if they could send the results to me, I would love to have that to be able to share with other people. I’m sure there are some young people who are hotshots in programming who can figure this out and it would be great to have it where I could share it with other people.

I’m sorry, I do not.

Moderator:	Great, thanks. Okay, so, we have a question; doesn’t the overall interaction term test if the difference between marginal effects are different? Is the marginal effect the same as a “simple effect?” Is this just a discipline language difference?

Dr. Norton:	Okay. Let me look this up, make sure I just have the question. Okay, [reading to self]. 

So, this probably is a language difference between disciplines. So, I’m honestly not sure what “simple effect” means. But given the way the question was asked, I think they were probably right. 

Moderator:	Okay, thank you. While you’re looking at the question pane, we did have a Stata code question [interruption] up top; if you had any thoughts. So, somebody asked if it’s appropriate to assess the significance of X1 in the equation that you see by doing a joint significance test in Stata with that code.

Dr. Norton:	So, I’m looking through the [interruption]…

Moderator:	It’s at the very top.

Dr. Norton:	Oh, at the very top. Oh, so, from Justin N.?

Moderator:	Yes.

Dr. Norton:	So, if you estimate the following model, [reading to self] is it appropriate to assess significance of X1 by doing a joint significant test? Ah, okay. That would be - well, that’s a different question than just; what is the effect of the interaction term. That would be the overall effect of X1; both directly and interactive with X2.

So, yes, that would be - yes, that would be overall significance test of X1. So, yes. Thank you, Justin.

Moderator:	Thanks. And then, we have a question about some of the Stata code you’ve provided. Somebody asked; what are the robust standard errors doing there? So, she commented that she’s used to seeing them in clustered models or to deal with heteroskedasticity. Can you provide a little insight into what they are doing here to help you derive appropriate standard errors for the interaction term?

Dr. Norton:	Sure. So, in general, for logit and probit - even simple logit and probit models - it is strongly recommended that you use robust standard errors; robust to sort of general forms of heteroskedasticity. 

By construction, logit and probit are heteroskedastic. And the sort of simple formulas that are not robust standard errors don’t take into account that built-in heteroskedasticity and are not correct.

So, you should always use robust standard errors when estimated logit or probit models. They generally don’t be wildly different but sometimes they’re - it’s not just clustering but even - and it’s certainly not about having an interaction term.

Moderator:	Okay.

Dr. Norton:	I hope that answered the question from Risha. Thank you.

Moderator:	Yeah, great. And she also was wondering about running a triple difference with a linear probability model in order to get subgroup specific effects. Is that kosher?

Dr. Norton:	Well, if you are the kind of person who likes linear probability models and if you have good identification of the three differences and a lot of variation across all three; then, great, go right ahead. 

It’s - again, if I were going to do it, I would probably do it both ways and play around with it a little bit. But you can do triple diff in a linear probability model. 

Moderator:	Right. Okay. So, we had a question about; why does Stata not show the double derivative automatically if that is what you need anyway? And how do other languages like R and SAS show these results?

Dr. Norton:	Alright, so, I can’t answer about R and SAS. So, what Stata - and I believe SAS and R - show as a default are the coefficients, the standard errors for those coefficients, confidence intervals, and so forth, for the underlying model.

Then, the question is; well, what do you do with all those numbers, which are typically not easy to interpret just on their own? And then, we have to do some work. Do you want to show predicted probabilities? Do you want to show incremental effects or marginal effects or odds ratios? Please don’t. Or some other way of expressing what the model is showing us and teaching us. That’s really up to you. 

And sometimes people will put in interaction terms but that’s not really the main focus of the model or they’re just control variables.

So, I think the point here is that the default is to show the parameters of the model that’s estimated. And then, after doing that, then, you, the researcher, needs to figure out; well, how do I take that and present it in a way that makes the most sense? Do I make a graph? Do I make a table? Do I report marginal effects or something else?

Moderator:	Right, thank you. So, someone commented; seems that taking margins of any limitations can explain the relationship between two independent variables. But how do you interpret the meaning of the coefficient of interaction terms in the original nonlinear model?

Dr. Norton:	Yeah, that’s really hard. I don’t. 

Moderator:	[Laughter] Thanks.

Dr. Norton:	I try to avoid that. What it actually has to do with - I’m going to say this once and either this’ll make a lot of sense or it’ll just be gibberish. If you think about the first example I gave with the two, like activity limitations and physical health, and there were those two curves; if you don’t put in an interaction term, those two curves, they’re parts of an S curve, are actually parallel shifts of each other. They’re exactly the same shape and they’re just offset east-west. 

When you add an interaction term, the shape of the two curves is now slightly different. One’ll be a little steeper; one’ll be a little less steep. And that is graphically how I think about what the interaction term does is it’s changing the S curve for one subgroup relative to the other. That may or may not help anybody.

Moderator:	Great, thank you. We did have somebody - so, two comments about linear probability models. One; if you could just clarify what that means exactly. And then, another commenting that the biggest problem is that you can’t get linear probability models published and people who hate them seem to be the majority of reviewers.

Dr. Norton:	Right. So, commenting on that, many people feel very strongly about linear probability models, either hating them or loving them and only using them. And again, I fall somewhere in the middle. I find they can be useful, like many other things.

Again, what I mean by “linear probability model” is ordinary least squares with a binary dependent variable as opposed to the usual continuous variable but just having a 01-dependent variable, you can run ordinary least squares. Some people think that’s a terrible idea and would never do it. I think it can be useful at times.

Moderator:	Great. So, we had a question about the sine of - on the interaction term is the same for ATT and the interaction coefficient but that’s not true for the magnitude of the effect of the coefficients versus the ATT. Is that correct?

Dr. Norton:	Oh, I’m going to have to look at the - what’s the timestamp on that question?

Moderator:	11:44 and 11:41. She’s clarified what she was referring to there. It’s from Risha.

Dr. Norton:	Because I don’t have anything at 44.

Moderator:	Oh, okay. 

Dr. Norton:	By the way, if any - we’re about to run out of time - if anybody has questions that we were not able to get to, please send me an email and I will do my best to answer them. I’m really sorry we’re not able to meet in person and kind of have coffee afterwards and chat further. These have all been great questions and I really appreciate your listening. 

Moderator:	That’s fantastic. Yeah, we are running out. But I will say, since there are a few more that are a little more like specific to - so, maybe they could follow up with you in person just so we’re not going over. 

A few comments that say that there’s a margins package in R that replicates the Stata command, FYI.

Dr. Norton:	Great.

Moderator:	That’s what they say. And the simple effect would mean; what is the scope within one group. Somebody clarifying that.

Dr. Norton:	Great.

Moderator:	And I will leave the rest for - to hopefully follow up with you in person. This was an excellent presentation. Thank you so much.

Dr. Norton:	Thank you very much. And again, I would be glad to try and answer any further questions or to share my Stata code. Everyone should have access to the slides. So, I hope this was helpful.

Moderator:	Very helpful, thank you.

Dr. Norton:	Great. 
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