Prediction of opioid-related overdose and suicide events using administrative healthcare data

Ralph Ward, Ph.D. Research Scientist (biostatistician)

October 18, 2023

U.S. Department of Veterans Affairs

Veterans Health Administration Office of Research & Development

Acknowledgements

Funding: VISN 7 Research Development Award

Mentoring Team

Mulugeta Gebregziabher, PhD

Co-lead biostatistics core, HEROIC COIN; Vice Chair, for Academic Prog.; DPHS, MUSC

Robert Neal Axon, MD, MSCR

Director, HEROIC COIN Assoc. Chief, Medicine Service, Ralph H Johnson VAMC

Lewis Frey, PhD

HEROIC COIN Research Scientist and MUSC Biomedical Informatics Center

Jodie Trafton, PhD

Director, Program Evaluation and Resource Center, VHA Office of Mental Health and Suicide Prevention

Sheila Rauch, PhD, ABPP

Director of Mental Health Research and Program Evaluation, Atlanta VAMC

Michael Saenger, MD, FACP

Director, Empower Veterans Program for Pain, Atlanta VAMC

Stratification Tool for Opioid Risk Management (STORM)

Psychological Services 2017, Vol. 14, No. 1, 34-49

In the public domain http://dx.doi.org/10.1037/ser0000099

Development and Applications of the Veterans Health Administration's Stratification Tool for Opioid Risk Mitigation (STORM) to Improve Opioid Safety and Prevent Overdose and Suicide

Elizabeth M. Oliva, Thomas Bowe, and Sara Tavakoli Veterans Affairs (VA) Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, California, and VA Center for Innovation to Implementation, VA Palo Alto Health Care System, Menlo Park, California

Eleanor T. Lewis VA Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, California, and VA Center for Innovation to Implementation, VA Palo Alto Health Care System, Menlo Park, California

Ilse Wiechers VA Northeast Program Evaluation Center, VA Office of Mental Health Operations, West Haven, Connecticut, and Yale School of Medicine

Michael Harvey VA Academic Detailing Program, VA Pharmacy Benefits Management Services, Minneapolis, Minnesota

> Amanuel Medhanie Parsimony, Inc., Blaine, Minnesota

Susana Martins VA Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, California

Meenah Paik VA Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, California

Patricia Henderson VA Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, California

Tigran Avoundjian VA Center for Innovation to Implementation, VA Palo Alto Health Care System, Menlo Park, California

Jodie A. Trafton VA Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, California, VA Center for Innovation to Implementation, VA Palo Alto Health Care System, Menlo Park, California, and Stanford University School of Medicine

Stratification Tool for Opioid Risk Management (STORM)

Psychological Services 2017, Vol. 14, No. 1, 34-49 In the public domain http://dx.doi.org/10.1037/ser0000099

Development and Applications of the Veterans Health Administration's Stratification Tool for Opioid Risk Mitigation (STORM) to Improve Opioid Safety and Prevent Overdose and Suicide

Elizabeth M. Oliva, Thomas Bowe, and Sara Tavakoli Veterans Affairs (VA) Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, Susana Martins VA Program Evaluation and Resource Center, VA Office of Mental Health Operations, Menlo Park, California

- Clinical decision support tool
- Uses VHA EMR data extracts
- Estimate patient risk for an overdose or suicide-related events
- Provide actionable information for risk-stratified intervention
- Help providers prioritize clinical resources.

Potential limitations:

- Heavy reliance on ICD codes
- Relies on VHA pharmacy data
- Basic statistical modeling approach, combined outcome

ICD codes can lead to under-reporting

- Reliance on International Classification of Disease (ICD) codes to identify disease conditions can lead to under-reporting because:
 - Administrative codes are not consistently recorded, especially for secondary diagnoses
 - Dual-healthcare system users often have fragmented records not fully available within the VA Corporate Data Warehouse (CDW).

ICD codes can lead to under-reporting

- Reliance on International Classification of Disease (ICD) codes to identify disease conditions can lead to under-reporting because:
 - Administrative codes are not consistently recorded, especially for secondary diagnoses
 - Dual-healthcare system users often have fragmented records not fully available within the VA Corporate Data Warehouse (CDW).
- Example:
 - Only 46.1% of VISN 7 Veterans with drug overdose from any drug class in 2018 had any prior diagnosis of substance use disorder.
 - Only 10.9% of VISN7 Veterans with opioid overdose in 2018 carried prior ICD-10 codes for opioid use disorder (OUD).

Non-VHA pharmacy data may be helpful

- Dual pharmacy system utilization may be associated with:
 - higher morphine equivalent daily doses (MEDD)¹
 - higher risk for overdose mortality²
 - Dual VHA-Part-D Medicare users had significantly higher odds of death from prescription opioid overdose than those who received opioids from VA only (odds ratio [OR], 3.53 [95% CI, 2.17 to 5.75]; P < 0.001) or Part D only (OR, 1.83 [CI, 1.20 to 2.77]; P = 0.005).

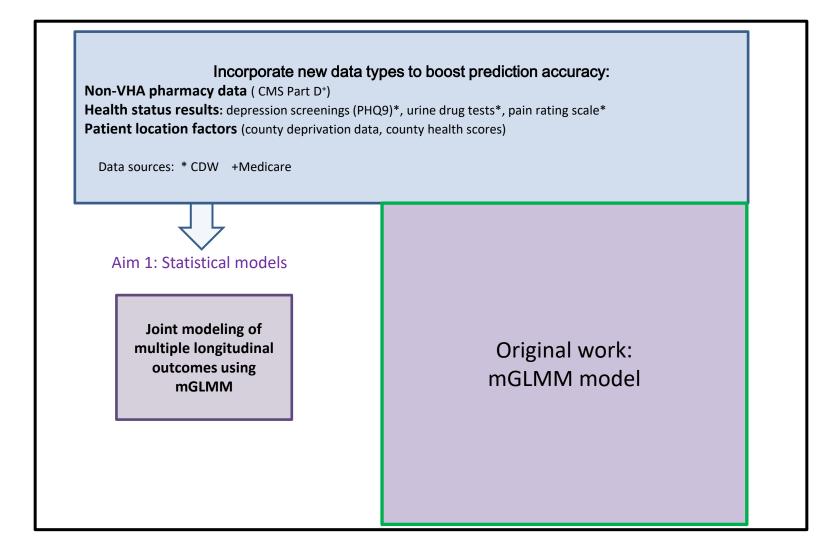
¹Moyo, P., Zhao, X., Thorpe, C. T., Thorpe, J. M., Sileanu, F. E., Cashy, J. P., Hale, J. A., et al. (2019). Dual Receipt of Prescription Opioids From the Department of Veterans Affairs and Medicare Part D and Prescription Opioid Overdose Death Among Veterans: A Nested Case-Control Study. *Annals of internal medicine*, *170*(7), 433–442.

²Gellad, W. F., Thorpe, J. M., Zhao, X., Thorpe, C. T., Sileanu, F. E., Cashy, J. P., Hale, J. A., et al. (2018). Impact of Dual Use of Department of Veterans Affairs and Medicare Part D Drug Benefits on Potentially Unsafe Opioid Use. *American Journal of Public Health*, 108(2), 248–255.

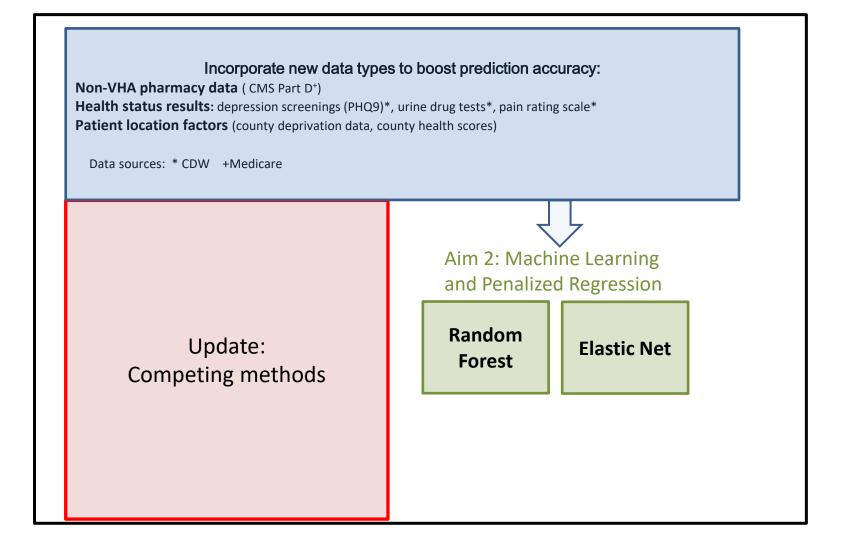
Goals:

Develop improvements to existing prediction models for opioid-related adverse outcomes:

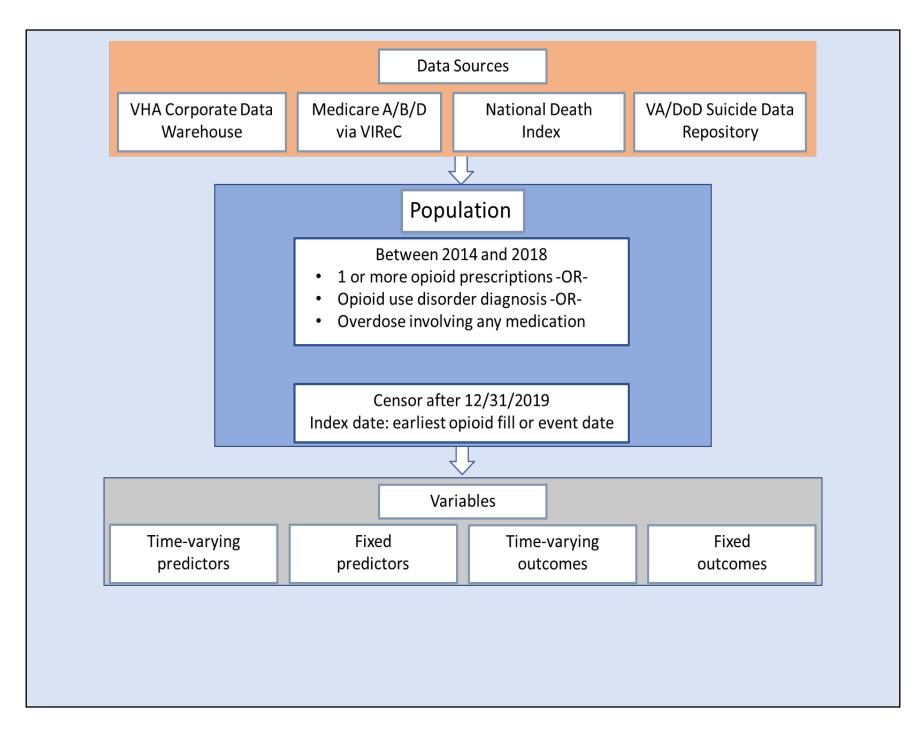
- Incorporate new predictors available in CDW and Medicare data that are strongly associated with opioid-related outcomes
- 2. Apply advanced statistical, machine learning and ensemble methods.



Ward, R., Weeda, E., Taber, D. J., Axon, R. N., & Gebregziabher, M. (2022). Advanced models for improved prediction of opioid-related overdose and suicide events among Veterans using administrative healthcare data. *Health services and outcomes research methodology*, *22*(2), 275–295.



Data sources and cohort description



2017 STO	2017 STORM Model Predictors			
Demographic	Sex Age Location (VISN and Station)			
Prior event ris	Prior event risk indicators			
	Overdose or suicide event (combined) in year prior Falls / accidents in year prior			
Prescription r	elated			
	Opioid therapy type (long vs short acting; acute vs long term) Morphine equivalent daily dose Co-prescription of opioids and sedatives Number of sedative classes prescribed			
Substance use	e disorders			
MH disorders	Opioid use disorder Alcohol use disorder Tobacco use disorder Sedative use disorder Stimulant use disorder Cannabis/hallucinogen use disorder Other SUD			
IVIH disorders	PTSD			
	Major depressive disorder Bipolar disorder Other MH disorder			
Medical Comorbidities				
	31 Elixhauser comorbidities diagnosed year prior			
Treatments	Detoxification treatment in year prior Inpatient MH treatment in year prior			
Utilization	ER visit in year prior			

	2017 STORM Model Predictors	Additional Predictors / Data sources
Demographic	Age	Race and ethnicity, Service-related disability percentage Marital status, urban-rural location,
Prior event ris	Location (VISN and Station) k indicators	County and census tract deprivation / socio-economic var.
	Overdose or suicide event (combined) in year prior Falls / accidents in year prior	Separate prior outcomes (SRE and OD)
Prescription re	Opioid therapy type (long vs short acting; acute vs long term) Morphine equivalent daily dose Co-prescription of opioids and sedatives	Positive urine lab results (14 medication classes) Other medication classes (8 classes)
Substance use	Number of sedative classes prescribed	CMS Part D data
Substance use	Opioid use disorder, Alcohol use disorder, Tobacco use disorder, Sedative use disorder, Stimulant use disorder, Cannabis/hallucinogen use disorder, Other SUD.	
		Lab Results / Health Factors Urine drug tests Numeric pain scale (1-10)
MH disorders		
	PTSD Major depressive disorder Bipolar disorder Other MH disorder	Screening results: Suicide ideation (C-SRRS, PHW2+I9, PTSD-5+I9) Brief addiction measure (BAM) Depression (PHQ9)
Medical Como		Baseline conditions or those developed within 1 year prior
31 Elixhauser o	comorbidities diagnosed year prior	Chronic pain CMS diagnoses
Treatments	Detoxification treatment in year prior Inpatient MH treatment in year prior	
Utilization	ED visit in year prior	CMS ED visits, Inpatient and outpatient utilization (VHA+ CMS)

Chronic pain algorithm*

- (1) Single occurrence of an ICD-9 or ICD-10 code shown to be highly likely to represent chronic pain, **or**
- (2) Two or more occurrences of ICD codes shown to be likely to represent chronic pain, separated by at least 30 days, **or**
- (3) Receipt of at least 90 days of opioid medication, or
- (4) One occurrence of an ICD code likely to represent chronic pain AND two or more numeric pain scores of 4 or higher more than 30 days apart.

Patients were not considered to have chronic pain until 90 days had passed after any surgery

*Tian, T.Y., Zlateva, I., Anderson, D.R.: Using electronic health records data to identify patients with chronic pain in a primary care setting. *J Am Med Inform Assoc* 20, e275–e280 (2013). https:// doi. org/ 10. 1136/ amiaj nl- 2013- 001856

Longitudinal design: previous year's variables used to predict following year's outcomes



One patient's data (up to 5 rows): Yearly predictors				
	Year 1	Year 2		
	2	3		
	3	4		
	4	5		
	5	6		

Aim 1 Method: mGLMM model

$$\log it \left(Y_{ij}^{1} \right) = \beta_{0}^{1} + b_{0} + \beta_{1}^{1} t_{j} + \beta_{2}^{1} x_{i},$$

$$\log it \left(Y_{ij}^2 \right) = \beta_0^2 + b_0 + \beta_1^2 t_j + \beta_2^2 x_i$$

Multivariate generalized linear mixed model

- Two outcomes (1=OD and 2=SRE) modeled jointly
- Shared random intercept (b_0)
- Patient *i* and year *j*
- Separate fixed parameter estimates for each outcome
- Assumes a latent relationship between outcomes

Aim 2 Methods: Random Forest algorithm

- 500 independent decision trees used to train a 'forest' to determine which predictors are most important in classifying a known outcome
- In each tree, part of the data is held out (termed 'out of bag') and used to test that tree's predictive performance on new data.
- Inherent ability to handle collinearity and account for interactions
- Out of bag results for the full forest are equivalent to cross validation results
- The 'forest' can then be used to make predictions for new data.

Aim 2 Methods: Elastic net penalized regression

- Method designed to 'shrink' some estimates to 0 based on their lower importance in predicting the outcome of interest.
- Related methods are LASSO and Ridge Regression; each is optimal in certain situations. Elastic net is a compromise between them.
- Model is first 'tuned' using a cross-validation step to find the best performing model parameters

Population summary

Population characteristics		≥1 overdose	≥1 suicide related event	Overall
Group size		165,680(9.5%)	97,688 (5.6%)	1,744,667
Race ethnicity	Non-Hispanic White	122,429 (10.2%)	64,073 (5.3%)	1,203,231 (69.0%)
	Non-Hispanic Black	31,688 (8.4%)	23,681 (6.3%)	375,726 (21.5%)
	Hispanic	6,738 (6.9%)	6,207 (6.4%)	97,052 (5.6%)
	Other	4,525 (6.6%)	3,727 (5.4%)	68,658 (3.9%)
Age category	Under 30	3,468 (4.5%)	7,806 (10.1%))	76,982 (4.4%)
	30 - 50	18,185 (5.3%)	27,567 (8.1%)	341,299 (19.6%)
	51- 65	61,206 (9.4%)	43,441 (6.6%)	653,531 (37.5%)
	Over 65	82,521 (12.3%)	18,874 (2.8%)	672,855 (38.6%)
Sex	Female	12,866 (8.0%)	11,772 (7.3%)	160,905 (9.2%)
	Male	152,514 (9.6%)	85,916 (5.4%)	1,583,762 (90.8%)
Marital status	Married	78,081 (9%)	33,570 (3.9%)	867,356 (49.7%)
	Unmarried	87,299 (10%)	64,118 (7.3%)	877,311 (50.3%)
Service related	< 50%	87,999 (9.6%)	42,347 (4.6%)	913,268 (52.4%)
disability	≥50%	77,381 (9.3%)	55,341 (6.7%)	831,399 (47.7%)
Opioid from CMS courses	No	134,290 (8.7%)	82,836(5.4%)	1,534,951 (88.0%)
Opioid from CMS source	Yes	31,090 (14.8%)	14,852 (7.1%)	209,716 (12.0%)

Population summary

Population characteristics		≥1 overdose	≥1 suicide related event	Overall
Group size		165,680(9.5%)	97,688 (5.6%)	1,744,667
Chronic Pain	Not diagnosed	11,168 (4.3%)	5,096 (1.9%)	272,190 (15.6%)
	Likely	84,331 (7.8%)	46,802 (4.3%)	1,077,561 (61.8%)
	Highly Likely	69,281 (17.5%)	45,790 (11.6%)	394,916 (22.6%)
Prior events	Overdose	52,033 (40.5%)	22,093 (17.2%)	128,479 (7.4%)
	Suicide-related	22,977 (29.7%))	39,087 (50.5%)	77,401 (4.4%)

Prediction performance

Original results:

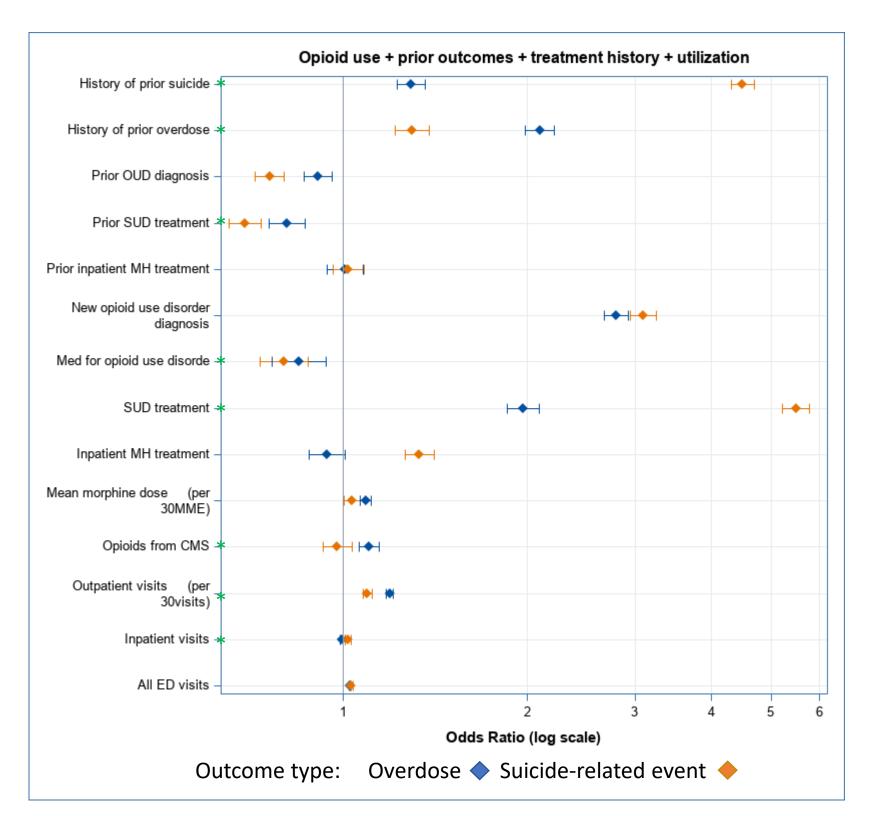
Performance measures using validation data at optimized threshold probability (maximum Youden score)	mGLMM	STORM
Area under the ROC curve (AUC) (95% confidence interval)	0.838 (0.836, 0.840)	0.757 (0.754, 0.760)
Sensitivity	0.71	0.68
Specificity	0.81	0.70
Precision (PPV)	0.09	0.11
Negative predictive value (NPV)	0.99	0.98
Number needed to evaluate	10.79	9.36

Machine Learning and penalized regression results:

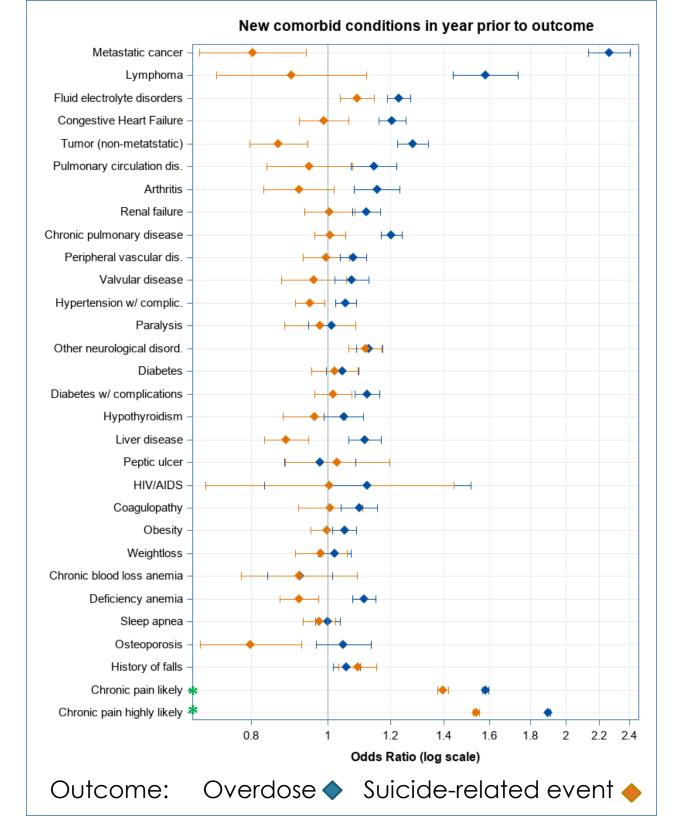
Performance measures using validation data at optimized	Davida en Farra et	
threshold probability (maximum Youden score)	Random Forest	Elastic Net
Area under the ROC curve (AUC) (95% confidence interval)	0.835 (0.831, 0.838)	0.826 (0.825, 0.827)
Sensitivity	0.76	0.67
Specificity	0.81	0.80
Precision (PPV)	0.07	0.05
Negative predictive value (NPV)	0.99	0.99
Number needed to evaluate	14.4	18.3

mGLMM

* = new predictor

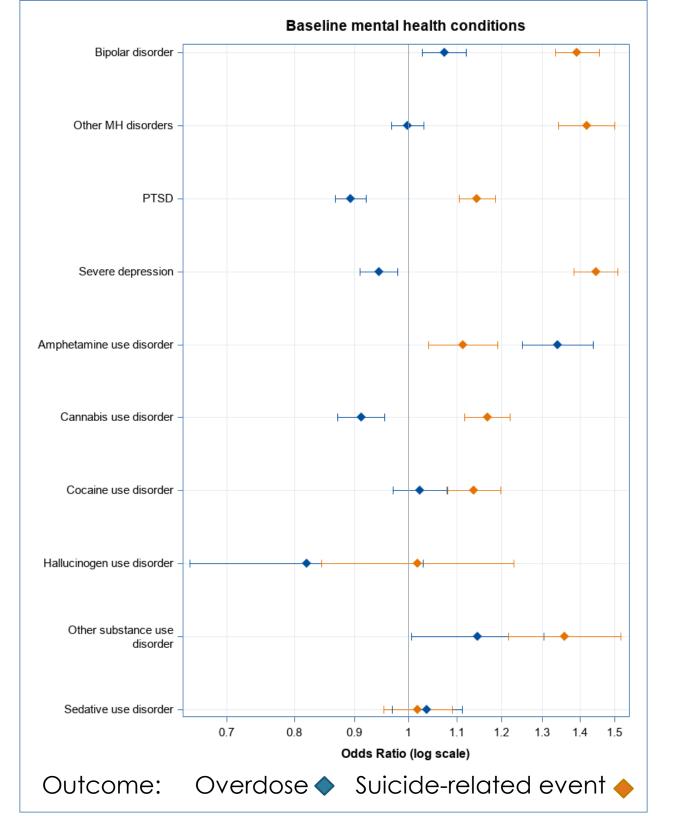


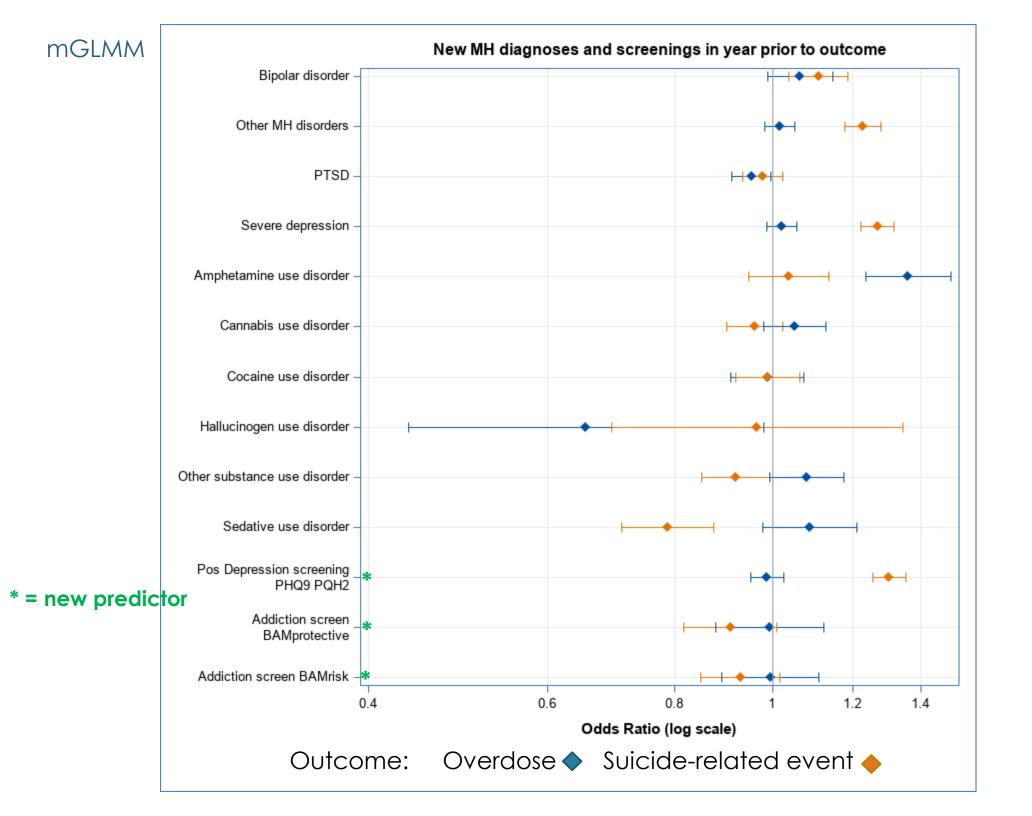
mGLMM



* = new predictor

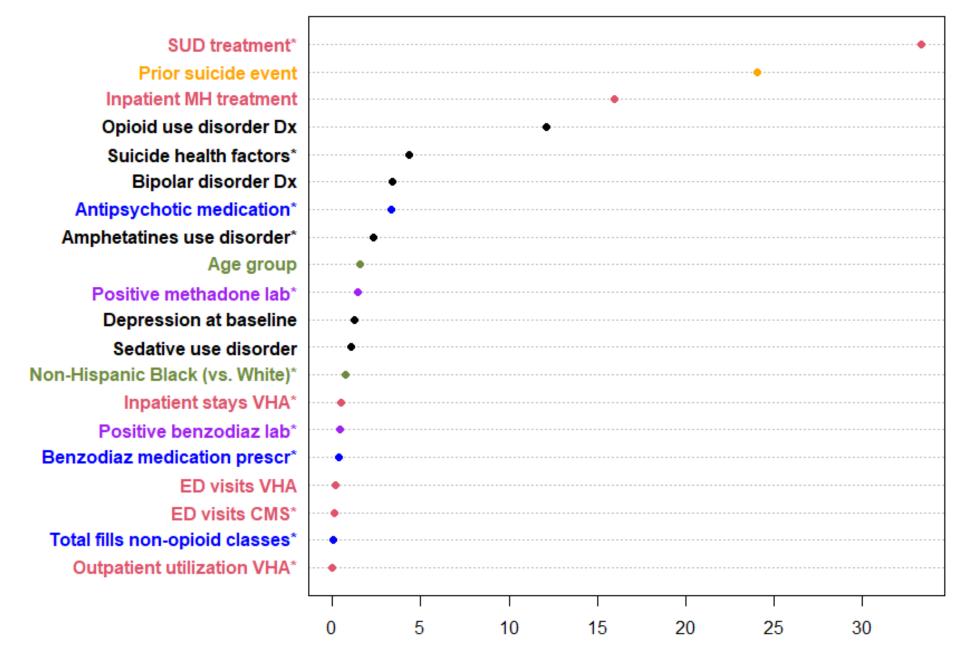
mGLMM





Elastic Net: Variable importance

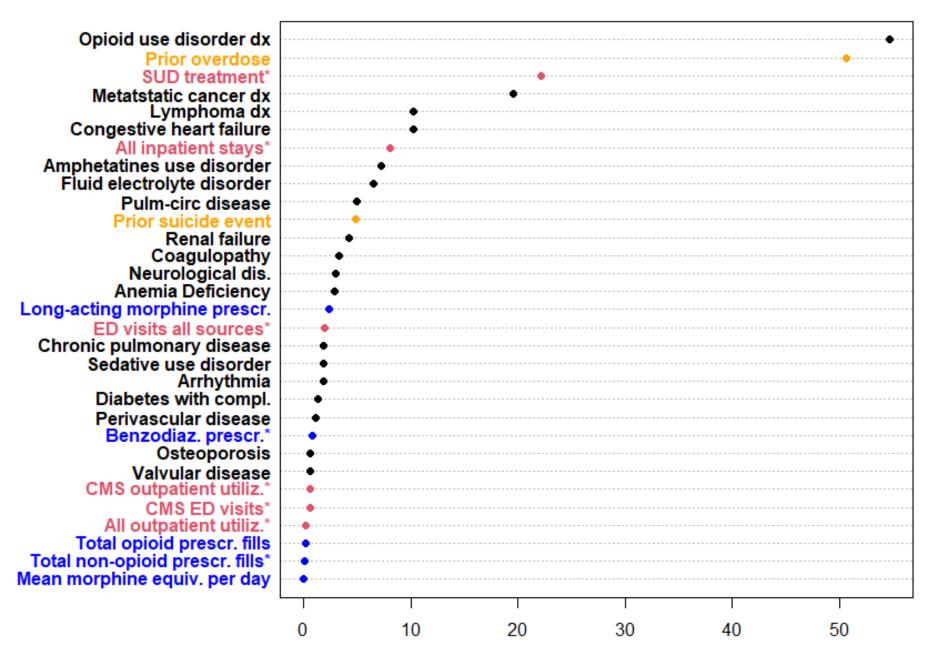
Suicide-related events (Elastic Net)



Parameter estimate (scaled)

Elastic Net Variable importance

Overdose events (Elastic Net)



Parameter estimate (scaled)

Conclusions

- RF and Elastic Net performance similar overall to mGLMM
 - Elastic Net model results may be easier to interpret
- Separate analysis of OD and suicide related outcomes provides new insights how one risk factor can have differing impacts
- Confirmed importance for new predictors and data sources:
 - Screening results for depression /suicide risk
 - Positive urine screening results
 - Opioid types and co-prescribed medication classes
 - Inpatient and outpatient utilization (beyond ED visits)
 - CMS data (especially for OD prediction)

Further challenges

- Implementation (some common reviewer responses)
 - 'Prediction model is a black box: does it make clinical sense?'
 - 'Model is too complex to be clinically useful: could not run it in real time' (not true: original model development is time intensive, but not new predictions from that model)
- Addressing potential subgroup bias: is the model fair to all groups? (we found bias when comparing age group predictions)
- Evolving opioid crisis: opioid related overdoses much more likely to involve illicit & synthetic opioids (fentanyl)
 - Older models may not have continued validity in new risk landscape
 - Pharmacy data could be less important

Questions?

U.S. Department of Veterans Affairs

Veterans Health Administration Office of Research & Development

Back-up slides

U.S. Department of Veterans Affairs

Veterans Health Administration Office of Research & Development

