VA Cooperative Studies Program #2038 COVID-19 Pharmacotherapy Effectiveness in the VA Healthcare System (COPE-VA) Kristina Bajema, MD, MSc & George Ioannou BMBCh, MS September 21, 2023

U.S. Department of Veterans Affairs

I have no disclosures.

U.S. Department of Veterans Affairs

Objectives

- Understand how target trial emulation principles are applied to observational data to make causal inference about COVID-19 antiviral effectiveness.
- Recognize the benefits and limitations of currently recommended pharmacotherapies for treatment of mild-tomoderate COVID-19.
- Describe evidence from observational studies conducted within the Veterans Health Administration regarding the effectiveness of nirmatrelvir-ritonavir and molnupiravir in preventing short- and long-term COVID-19–related outcomes.

Outline

- COPE-VA platform
- Efficacy and limitations of outpatient COVID-19 antivirals
- Utilization in Veterans Health Administration (VHA)
- Motivation for real-world evidence and the role of target trial emulation methodology
- Effectiveness of nirmatrelvir-ritonavir and molnupiravir in COPE-VA studies
- Future directions

COPE-VA Background

U.S. Department of Veterans Affairs

COPE-VA Background

Aim 1: Build a platform for effectiveness and comparative effectiveness studies

- Describe trends and factors related to prescription of pharmacotherapies for treatment of mild to moderate COVID-19
- Inform clinical, operational, and research partners on strategies for optimizing use of COVID-19 pharmacotherapies
- Build common framework sharing similar population, design, and methodology

Aim 2: Determine effectiveness and comparative effectiveness of current and novel therapies

 Conduct observational studies emulating randomized trials of COVID-19 pharmacotherapies

EUA/Approval Timeline

Casirivimab-imdevimab	
Bamlanivimab-etesevimab	
Sotrovimab	
Bebtelovimab	
Nirmatrelvir-ritonavir	
Molnupiravir	
Outpatient Remdesivir	

U.S. Department of Veterans Affairs

NIH Recommendations for Outpatient COVID-19 Treatment

Preferred therapies. Listed in order of preference:

- Ritonavir-boosted nirmatrelvir (AIII)
- Remdesivir (BIIa)

Alternative therapy. For use when the preferred therapies are not available, feasible to use, or clinically appropriate:

Molnupiravir (CIIa)

NIH. COVID-19 Treatment Guidelines. <u>Nonhospitalized Adults: Therapeutic Management</u> <u>COVID-19 Treatment Guidelines (nih.gov)</u>

Nirmatrelvir-ritonavir: EPIC-HR

- Study participants:
 - Unvaccinated
 - Non-hospitalized
 - ≥18 years
 - COVID-19 symptom onset within 5 days
 - ≥1 risk factor for severe disease
- Treatment: nirmatrelvir-ritonavir x5 days
- Endpoint: COVID-19—related hospitalization or death from any cause through day 28

Hammond J, et al. N Engl J Med. 2022. DOI: DOI: 10.1056/NEJMoa2118542.

Risk difference -5.6 percentage points (95% CI, -7.2 to -4.0)

Hammond J, et al. N Engl J Med. 2022. DOI: DOI: 10.1056/NEJMoa2118542.

U.S. Department of Veterans Affairs Veterans Health Administration Cooperative Studies Program

Molnupiravir: MOVe-OUT

- Study participants:
 - Unvaccinated
 - Non-hospitalized
 - ≥18 years
 - COVID-19 symptom onset within 5 days
 - ≥1 risk factor for severe disease
- Treatment: molnupiravir x5 days
- Endpoint: all-cause hospitalization or death through day 29

Bernal AJ, et al. N Engl J Med. 2022. DOI: 10.1056/NEJMoa2116044.

Hospitalization for Any Cause or Death

Risk difference -3.0 percentage points (95% CI, -5.9 to -0.1)

Bernal AJ, et al. N Engl J Med. 2022. DOI: 10.1056/NEJMoa2116044.

Molnupiravir: PANORAMIC

- Study participants:
 - Mostly vaccinated
 - Non-hospitalized
 - ≥50 years or ≥18 years with comorbidities
 - COVID-19 symptom onset within 5 days
- Treatment: molnupiravir x5 days
- Endpoint: all-cause hospitalization or death through day 28

Butler CC, et al. Lancet. 2022. DOI: https://doi.org/10.1016/S0140-6736(22)02597-1.

No benefit for hospitalization or death

All-Cause Hospitalization or Death through Day 28

aOR 1.06 (95% CI, 0.81-1.41)

- Reduced time to self-reported recovery (9 versus 15 days)
- Reduced viral load

Butler CC, et al. Lancet. 2022. DOI: https://doi.org/10.1016/S0140-6736(22)02597-1.

Nirmatrelvir-ritonavir Adverse Effects

This Candy Is the Only Thing That Helped My Terrible "Paxlovid Mouth"

The antiviral treatment for COVID left a monstrous taste in my mouth. Cinnamon candies were my savior.

BY EMILY FARRIS June 24, 2022

This Candy Is the Only Thing That Helped My Terrible "Paxlovid Mouth" | Bon Appétit (bonappetit.com)

U.S. Department of Veterans Affairs

Nirmatrelvir-ritonavir Contraindications

- Not recommended in patients with eGFR < 30 mL/min or severe hepatic impairment (Child-Pugh Class C)
- Many drug-drug interactions (ritonavir = potent CYP3A inhibition)
 - 37 contraindicated
 - 21 avoid concomitant use
 - 49 dose adjustment recommended
 - 6 therapeutic monitoring (e.g., warfarin, tacrolimus)

FDA. New Drug Application (NDA) 21788. <u>March 16, 2023 Meeting of the Antimicrobial</u> <u>Drugs Advisory Committee Meeting (fda.gov)</u>

Nirmatrelvir-ritonavir Drug-Drug Interactions

- Apixaban (atrial fibrillation)
- Metoprolol succinate
- Pantoprazole
- Sertraline
- Sildenafil (erectile dysfunction)
- Simvastatin
- Tamsulosin

Nirmatrelvir-ritonavir Drug-Drug Interactions

- Apixaban \rightarrow decrease dose
- Metoprolol succinate
- Pantoprazole
- Sertraline
- Sildenafil → hold during treatment*
- Simvastatin \rightarrow hold 12 hours before to 5 days after
- Tamsulosin → decrease dose

NIH. Drug-Drug Interactions Between Ritonavir-Boosted Nirmatrelvir (Paxlovid) and Concomitant Medications. <u>Paxlovid</u> <u>Drug-Drug Interactions | COVID-19 Treatment Guidelines (nih.gov)</u> University of Liverpool. COVID019 Drug Interactions. <u>Liverpool COVID-19 Interactions (covid19-druginteractions.org)</u>

Molnupiravir Adverse Effects

Not recommended during pregnancy or breastfeeding

U.S. Department of Veterans Affairs

SCIENCEINSIDER HEALTH

A prominent virologist warns COVID-19 pill could unleash dangerous mutants. Others see little cause for alarm

Merck & Co.'s newly approved oral drug works by generating mutations, raising hypothetical fears

7 NOV 2021 · 12:35 PM · BY ROBERT F. SERVICE

U.S. Department of Veterans Affairs

VA Research Communications 2019. Photo: © iStock/NanoStockk, imaginima

U.S. Department of Veterans Affairs

VHA and Drug Distribution

- VHA serves more than 9 million enrolled Veterans each year at 171 medical centers and 1,113 outpatient sites of care
- COVID-19 pharmacotherapies under EUA are traditionally allocated across VHA pharmacies through a national distribution system coordinated by the Pharmacy Benefits Management Services (PBM)
- PBM also conducts surveillance to ensure prescription among eligible Veterans

U.S. Department of Veterans Affairs

Integrate Multiple Data Sources

- VA Corporate Data Warehouse
- Centers for Medicare and Medicaid Services
- VA Community Care program

U.S. Department of Veterans Affairs

SARS-CoV-2 Tests

- Laboratory-confirmed (nucleic acid amplification or antigen)
- Performed within VHA as well as outside VHA and documented in VHA clinical records
- First positive test results

Original Investigation | Public Health

Early Adoption of Anti-SARS-CoV-2 Pharmacotherapies Among US Veterans With Mild to Moderate COVID-19, January and February 2022

Kristina L. Bajema, MD, MSc; Xiao Qing Wang, MPH; Denise M. Hynes, MPH, PhD, RN; Mazhgan Rowneki, MPH; Alex Hickok, MS; Francesca Cunningham, PharmD; Amy Bohnert, PhD, MHS; Edward J. Boyko, MD, MPH; Theodore J. Iwashyna, MD, PhD; Matthew L. Maciejewski, PhD; Elizabeth M. Viglianti, MD, MPH, MSc; Elani Streja, PhD; Lei Yan, PhD; Mihaela Aslan, PhD; Grant D. Huang, MPH, PhD; George N. Ioannou, BMBCh, MS

Original Investigation | Infectious Diseases Anti–SARS-CoV-2 Pharmacotherapies Among Nonhospitalized US Veterans, January 2022 to January 2023

Lei Yan, PhD; Elani Streja, PhD; Yuli Li, MS; Nallakkandi Rajeevan, PhD; Mazhgan Rowneki, MPH; Kristin Berry, PhD; Denise M. Hynes, MPH, PhD, RN; Francesca Cunningham, PharmD; Grant D. Huang, MPH, PhD; Mihaela Aslan, PhD; George N. Ioannou, BMBCh, MS; Kristina L. Bajema, MD, MSc

Yan L, et al. JAMA Network Open 2023. DOI: 10.1001/jamanetworkopen.2023.31249

U.S. Department of Veterans Affairs

Yan L, et al. JAMA Network Open 2023. DOI: 10.1001/jamanetworkopen.2023.31249

U.S. Department of Veterans Affairs

- Regional differences by Veterans Integrated Services Network (VISN) in the relative use of different pharmacotherapies
- Older Veterans with a higher burden of underlying conditions as well as persons of Black race and Hispanic ethnicity were more likely to receive treatment
- Unvaccinated, rural were less likely to receive treatment

Yan L, et al. JAMA Network Open 2023. DOI: 10.1001/jamanetworkopen.2023.31249

Motivation for Real-World Evidence of COVID-19 Pharmacotherapy Effectiveness

- Clinical trials were conducted primarily among unvaccinated subjects
- Most trials were conducted before the Omicron variant emergence
- Trials were conducted among persons with a first episode of COVID-19
- Clinical trials did not directly compare different pharmacotherapies
- Impact on post-acute sequelae of COVID-19 was not examined

Target Trial Emulation

- Not always able to conduct a randomized trial to answer the causal question of interest
- To effectively use real-world data for causal inference, a study should be carefully designed to emulate a hypothetical randomized trial
- Apply design principles from randomized trials:
 - Eligibility
 - Treatment strategy and assignment
 - Follow-up
 - Outcomes
 - Causal contrast
 - Analysis plan

Labrecque and Swanson. Eur J Epidemiol 2017. DOI: 10.1007/s10654-017-0293-4 Hernán MA and JM Robins. *Am J Epidemiol* 2016. DOI: 10.1093/aje/kwv254

Target Trial Emulation Framework: Eligibility

Target Trial Specification

- First positive SARS-CoV-2 test between January 1 and July 31, 2022
- Enrolled adult Veterans with VHA primary care visit in the last 18 months
- Alive and not hospitalized through the day following the positive test and no hospitalization on or before the day of randomized assignment to treatment or no treatment
- No prior COVID-19 treatment
- ≥1 risk factor for progression to severe COVID-19
- No contraindications to medication use
- Symptomatic infection

Target Trial Emulation

Same

Not included

Target Trial Framework: Treatment Strategy

Target Trial Specification

 Randomized to treatment with nirmatrelvirritonavir or no treatment within 5 days of symptom onset

Target Trial Emulation

 Used treatment within 5 days of the testpositive date rather than within 5 days of symptom onset

U.S. Department of Veterans Affairs

Target Trial Framework: Treatment Outcomes

Target Trial Specification

Primary

- Any hospitalization or death through day 30
- Any hospitalization or death from days 31-180

Secondary

- ICU admission through day 30
- Mechanical ventilation through day 30

Target Trial Emulation

Same

Target Trial Framework: Follow-up

Target Trial Specification

• For each person, follow-up started on the day of randomization to nirmatrelvirritonavir or no treatment and continued until day 180 after treatment

Target Trial Emulation

- Same
- For untreated patients, an index was assigned which was the same interval (paired) from the date of testing positive as the treated match (treatment interval)

Target Trial Framework: Causal Contrasts

Target Trial Specification

• Intention-to-treat effect

Target Trial Emulation

• Same

U.S. Department of Veterans Affairs

Emulated Three Trials

- Retrospective cohort study to emulate 3 target trials of COVID-19 antivirals among symptomatic, non-hospitalized adult
 - Trial 1: nirmatrelvir-ritonavir vs no treatment
 - Trial 2: molnupiravir vs no treatment
 - Trial 3: nirmatrelvir-ritonavir vs molnupiravir

Bajema KL, et al. Ann Intern Med. 2023. DOI: 10.7326/M22-3565

U.S. Department of Veterans Affairs

U.S. Department of Veterans Affairs

Matching in nested sequential trials

U.S. Department of Veterans Affairs

Matched Patient Population Across 3 Trials

- 86-91% male
- Median ages 66-70 years
- 7-9% Hispanic, 15-19% Black, 63-69% White
- Median 4-5 medical conditions
- 11-18% not vaccinated
- >90% treated within 0/1 day of positive test

30-day Hospitalization or Death

U.S. Department of Veterans Affairs

Trial 1: 30-day Outcomes

	Incidence (95% Cl) pers	, events per 1000 ons		
	Nirmatrelvir- ritonavir	No Treatment	Risk Difference (95% Cl)	Risk Ratio (95% Cl)
Hospitalization or death	23.00	34.17	-11.16	0.67
	(20.19 to 26.20)	(31.42 to 37.15)	(-15.30 to -7.03)	(0.58 to 0.79)
Hospitalization	22.07	30.32	-8.25	0.73
	(19.31 to 25.20)	(27.68 to 33.20)	(-12.27 to -4.23	(0.62 to 0.85)
Death	1.25	5.47	-4.22	0.23
	(0.71 to 2.20)	(4.55 to 6.58)	(-5.45 to -3.00)	(0.13 to 0.41)
ICU admission	2.50	4.90	-2.40	0.51
	(1.67 to 3.72)	(3.85 to 6.24)	(-3.95 to -0.85)	(0.32 to 0.81)
Mechanical ventilation	0.83	3.02	-2.19	0.28
	(0.42 to 1.66)	(2.26 to 4.03)	(-3.23 to -1.14)	(0.13 to 0.58)

Trial 1: 30-day Outcomes

	Incidence (95% Cl) pers	, events per 1000 ons		
	Nirmatrelvir- ritonavir	No Treatment	Risk Difference (95% Cl)	Risk Ratio (95% Cl)
Hospitalization or death	23.00	34.17	-11.16	0.67
	(20.19 to 26.20)	(31.42 to 37.15)	(-15.30 to -7.03)	(0.58 to 0.79)
Hospitalization	22.07	30.32	-8.25	0.73
	(19.31 to 25.20)	(27.68 to 33.20)	(-12.27 to -4.23	(0.62 to 0.85)
Death	1.25	5.47	-4.22	0.23
	(0.71 to 2.20)	(4.55 to 6.58)	(-5.45 to -3.00)	(0.13 to 0.41)
ICU admission	2.50	4.90	-2.40	0.51
	(1.67 to 3.72)	(3.85 to 6.24)	(-3.95 to -0.85)	(0.32 to 0.81)
Mechanical ventilation	0.83	3.02	-2.19	0.28
	(0.42 to 1.66)	(2.26 to 4.03)	(-3.23 to -1.14)	(0.13 to 0.58)

Trial 2: 30-day Outcomes

	Incidence (95% Cl) pers	, events per 1000 ons		
	Molnupiravir	No Treatment	Risk Difference (95% Cl)	Risk Ratio (95% Cl)
Hospitalization or death	43.6653.37(37.37 to 50.96)(48.40 to 58.81)		-9.70 (-18.04 to -1.37)	0.82 (0.68 to 0.98)
Hospitalization	41.67 (35.53 to 48.81)	42.67 (38.13 to 47.71)	-1.00 (-9.05 to 7.05)	0.98 (0.81 to 1.18)
Death	3.14 (1.74 to 5.66)	13.56 (11.31 to 16.24)	-10.42 (-13.49 to -7.35)	0.23 (0.13 to 0.43)
ICU admission	7.71 (5.29 to 11.21)	7.30 (5.52 to 9.66)	0.40 (-3.10 to 3.91)	1.06 (0.66 to 1.68)
Mechanical ventilation	3.14 (1.74 to 5.66)	3.38 (2.43 to 4.70)	-0.24 (-2.40 to 1.93)	0.93 (0.47 to 1.83)

U.S. Department of Veterans Affairs

31-180-day Hospitalization or Death

U.S. Department of Veterans Affairs

Trial 1: 31-180-day Outcomes

	Incidence, events p		
	Nirmatrelvir-ritonavir	No Treatment	Hazard Ratio or Subhazard Ratio ¹ (95% CI)
Hospitalization or death	59.32	67.99	0.87 (0.79 to 0.96)
Hospitalization	55.82	62.26	0.90 (0.79 to 1.02)
Death	5.40	8.22	0.66 (0.49 to 0.89)

¹Derived from proportional hazards regression that accounted for the competing risk for death, presented for hospitalization outcomes.

U.S. Department of Veterans Affairs

Trial 2: 31-180-day Outcomes

	Incidence, events p		
	Molnupiravir	No Treatment	Hazard Ratio or Subhazard Ratio ¹ (95% CI)
Hospitalization or death	104.76	100.27	1.04 (0.92 to 1.19)
Hospitalization	98.94	90.02	1.10 (0.95 to 1.29)
Death	11.05	16.39	0.67 (0.48 to 0.95)

¹Derived from proportional hazards regression that accounted for the competing risk for death, presented for hospitalization outcomes.

U.S. Department of Veterans Affairs

Trial 1 Subgroup Analysis: 30-day Hospitalization or Death

Subgroup	Nirmatrelvir-ritonavir Incidence (95% CI)*	No Treatment Incidence (95% CI)*	Risk Difference (95% Cl	I)		Relative Risk (95% CI)	P interaction
Age, years					1		<0.001
18-64	7.93 (4.51 to 13.92)	15.31 (10.76 to 21.74)	-7.38 (-14.17 to -0.59)			0.52 (0.27 to 0.99)	
≥65	26.67 (23.29 to 30.53)	38.21 (34.88 to 41.85)	-11.54 (-16.54 to -6.53)		_ - ¦	0.70 (0.59 to 0.82)	
COVID-19 vaccination status					1		< 0.001
Unvaccinated	30.03 (22.63 to 39.76)	32.27 (26.19 to 39.70)	-2.24 (-12.85 to 8.38)			- 0.93 (0.66 to 1.31)	
Primary or booster	20.57 (17.58 to 24.05)	31.84 (28.65 to 35.36)	-11.27 (-15.89 to -6.65)			0.65 (0.54 to 0.78)	
Immunocompromised							< 0.001
No	21.20 (18.37 to 24.45)	29.39 (26.48 to 32.61)	-8.19 (-12.48 to -3.90)		_	0.72 (0.60 to 0.86)	
Yes	44.44 (30.40 to 64.54)	77.21 (59.37 to 99.83)	-32.76 (-58.20 to -7.33)			0.58 (0.37 to 0.90)	
Timing of treatment, days					1		< 0.001
0/1	22.56 (19.68 to 25.86)	34.05 (31.18 to 37.18)	-11.49 (-15.78 to -7.20)		i	0.66 (0.56 to 0.78)	
2-5	29.01 (18.56 to 45.08)	35.75 (28.18 to 45.26)	-6.74 (-21.98 to 8.50)			- 0.81 (0.49 to 1.33)	
Symptoms							< 0.001
0	18.17 (13.67 to 24.10)	30.76 (26.66 to 35.47)	-12.60 (-19.36 to -5.83)		_ -	0.59 (0.43 to 0.81)	
≥1	24.39 (20.99 to 28.33)	36.25 (32.42 to 40.52)	-11.86 (-17.32 to -6.40)			0.67 (0.56 to 0.81)	
Treatment ≤5 days symptom onset*	27.33 (20.58 to 36.19)	34.79 (29.84 to 40.52)	-7.46 (-16.80 to 1.88)			0.79 (0.57 to 1.08)	
Overall	23.00 (20.19 to 26.20)	34.17 (31.42 to 37.15)	-11.16 (-15.30 to -7.03)		- -	0.67 (0.58 to 0.79)	
				0	0.5 1	1.5	

U.S. Department of Veterans Affairs

Trial 2 Subgroup Analysis: 30-day Hospitalization or Death

Subgroup	Molnupiravir Incidence (95% CI)*	No Treatment Incidence (95% CI)*	Risk Difference (95% CI)							9	Relative Risk (95% Cl)	P interaction
Age, years						1						<0.001
18-64	3.82 (0.53 to 26.91)	11.45 (4.54 to 28.57)	-7.63 (-20.58 to 5.32)	-	•	- 1					0.33 (0.04 to 2.92)	
≥65	48.59 (41.59 to 56.71)	57.23 (51.63 to 63.39)	-8.63 (-17.97 to 0.71)		-	•					0.85 (0.71 to 1.02)	
COVID-19 vaccination status						1						<0.001
Unvaccinated	48.46 (32.07 to 72.60)	82.78 (63.96 to 106.51)	-34.32 (-62.15 to -6.50)								0.59 (0.37 to 0.93)	
Primary or booster	40.07 (33.40 to 48.01)	44.51 (39.21 to 50.03)	-4.23 (-13.28 to 4.81)								0.90 (0.73 to 1.13)	
Immunocompromised						1						<0.001
No	39.72 (33.34 to 47.28)	45.88 (40.82 to 51.53)	-6.16 (-14.83 to 2.52)		77	•					0.87 (0.70 to 1.07)	
Yes	65.57 (42.59 to 99.68)	125.41 (96.52 to 161.40)	-59.85 (-98.86 to -20.81)			- 1					0.52 (0.33 to 0.83)	
Timing of treatment, days						1						0.013
0/1	43.42 (36.86 to 51.09)	54.99 (49.64 to 60.87)	-11.56 (-20.41 to -2.72)		<u> </u>	• i					0.79 (0.65 to 0.95)	
2-5	46.01 (27.85 to 75.10)	37.58 (28.30 to 49.73)	8.44 (-15.49 to 32.36)		1						1.22 (0.71 to 2.10)	
Symptoms						1						0.003
0	27.19 (18.12 to 40.61)	45.41 (36.71 to 56.05)	-18.22 (-32.81 to -3.63)								0.60 (0.38 to 0.95)	
≥1	49.90 (42.03 to 59.16)	57.25 (50.62 to 64.69)	-7.35 (-18.15 to 3.45)		-	+					0.87 (0.71 to 1.07)	
Treatment ≤5 days symptom onset*	45.99 (33.76 to 62.37)	63.48 (53.31 to 75.44)	-17.49 (-35.51 to 0.52)								0.72 (0.51 to 1.03)	
Overall	43.66 (37.37 to 50.96)	53.37 (48.40 to 58.81)	-9.70 (-18.04 to -1.37)			•					0.82 (0.68 to 0.98)	
				0	0.5	1	1.5	2	2.5	3		

U.S. Department of Veterans Affairs

Main Conclusions

- Nirmatrelvir-ritonavir was effective at preventing 30-day allcause mortality, hospitalization, ICU admission, and mechanical ventilation
- Risk reduction associated with molnupiravir was limited to all-cause mortality
- Additional mortality benefit was observed from days 31-180 for both antivirals

U.S. Department of Veterans Affairs

Limitations

- Not able to ascertain COVID-19–related symptom onset in most patients
- Not designed to capture prior infections
- Capture of outpatient COVID-19 treatments and outcomes (particularly hospitalizations) may be incomplete
- Residual confounding
- Could not verify whether Veterans who were prescribed antiviral medications completed treatment as recommended

Post COVID Conditions

Davis HE, et al. Nat Rev Microbiol 2023. DOI: https://doi.org/10.1038/s41579-023-00896-0

U.S. Department of Veterans Affairs

Approximately **1 in 5 adults**

ages 18+ have a health condition that might be related to their previous COVID-19 illness, such as:

Talk to your health care provider if you have symptoms after COVID-19

> bit.ly/MMWR7121 MAY 24, 2022

* Adults aged 65 and older at increased risk

MMWR

Bull-Otterson, et al. MMWR 2022. DOI: http://dx.doi.org/10.15585/mmwr.mm7121e1

U.S. Department of Veterans Affairs

Post-COVID conditions and symptoms

Cardiac	Renal
Acute coronary syndrome	Thromboembolic
Cardiac dysrhythmias	Venous thromboembolism
Cardiovascular disease	Pulmonary embolism
Chest pain	Gastrointestinal
Heart failure/cardiomyopathy	Gastrointestinal symptoms
Hypertension	Gastrointestinal disorders
Myocarditis and pericarditis	Neurologic
Pulmonary	Cerebrovascular disease
Respiratory symptoms	Dementia
Asthma	Dysautonomia
COPD/emphysema	Smell/taste disturbance
	Headache
	Sleeping disorders

Mental health Depression Other mood disorders Anxiety PTSD Substance-related disorders Musculoskeletal Myalgias and myositis Endocrine Diabetes General Malaise and fatigue Postviral fatigue Erectile dysfunction

Davis HE, et al. *Nat Rev Microbiol* 2023. DOI: https://doi.org/10.1038/s41579-023-00896-0 Bull-Otterson, et al. *MMWR* 2022. DOI: http://dx.doi.org/10.15585/mmwr.mm7121e1 Al-Aly, et al *Nature* 2021. DOI: 10.1038/s41586-021-03553-9

Data and Information Sharing

- Collaborate with VA COVID-19 Observational Research Collaboratory (CORC)
- CORC is building a research data repository, some resources created by COPE-VA will be shared with CORC
- Bidirectional knowledge sharing between analysts on both projects

https://www.research.va.gov/corc/default.cfm

U.S. Department of Veterans Affairs

- Incorporate prior infections
- Risk prediction modeling
- Apply target trial emulation principles to treatments for other respiratory infections
- Time zero (index date) methodology

- Incorporate prior infections
- Risk prediction modeling
- Apply target trial emulation principles to treatments for other respiratory infections
- Time zero (index date) methodology

- Incorporate prior infections
- Risk prediction modeling
- Apply target trial emulation principles to treatments for other respiratory infections
 - RSV, influenza
 - Oseltamivir, vaccine effectiveness
- Time zero (index date) methodology

- Incorporate prior infections
- Risk prediction modeling
- Apply target trial emulation principles to treatments for other respiratory infections
- Time zero (index date) methodology

Time zero = index date

U.S. Department of Veterans Affairs

Time zero = test date

U.S. Department of Veterans Affairs

Time zero = treatment date (treated) vs. test date (untreated)

U.S. Department of Veterans Affairs

COPE-VA Team and Collaborators

COPE-VA and CORC

Kristina Bajema (co-PI) George Ioannou (co-PI) Kristin Berry (Wyatt) David Bui **Denise Hynes** Mazhgan Rowneki Amy Bohnert Edward Boyko Theodore Iwashyna Matthew Maciejewski Thomas Osborne Elizabeth Viglianti

Mihaela Aslan Stephanie Argraves Yuan Huang Rene LaFleur Yuli Li Pradeep Mutalik Raj Nallakkandi Lei Yan William Lance Alysia Maffucci **VA Central Office**

Grant Huang David Atkins David Burnaska Amanda Garcia **Planning Committee*** Matthew Goetz Nicholas Smith Collaborators & Consultants

BARDA

Tim Buchman Kimberly Sciarretta

FDA

John Concato

Marie Bradley

Wendy Carter

Natasha Pratt

Rachel Thompson

Stephanie Troy

PBM

Fran Cunningham Yinong Young-Xu

*In addition to members already listed under VA Central Office, PBM, COPE-VA, CORC

U.S. Department of Veterans Affairs

- Kristina.Bajema@va.gov
- George.loannou@va.gov

U.S. Department of Veterans Affairs