

Center for the Study of Healthcare Innovation, Implementation & Policy

Burnout in VA Primary Care

Eric Apaydin, PhD, MPP, MS

Core Investigator Center for the Study of Healthcare Innovation, Implementation, & Policy VA Greater Los Angeles Healthcare System

March 16, 2022

Poll Question #1

What is your primary role in healthcare?

- -Clinical care
- -Research
- -Administrative
- –Other

Poll Question #2

Do you work in primary care?

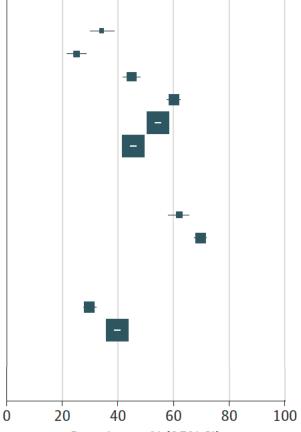
- -Yes full-time
- -Yes part-time
- -No

Learning Objectives

- 1. Understand the prevalence of burnout in VA primary care
- 2. Identify the individual and organizational drivers of burnout in VA primary care
- 3. Explore potential solutions to reduce VA primary care burnout

What is burnout?

- "A psychological syndrome emerging as a prolonged response to chronic interpersonal stressors on the job."
 - Christina Maslach, creator of the Maslach Burnout Inventory (MBI), Maslach & Leiter, 2016
- Two main components of burnout in MBI:
 - -Emotional exhaustion (EE)
 - -Depersonalization (DP)

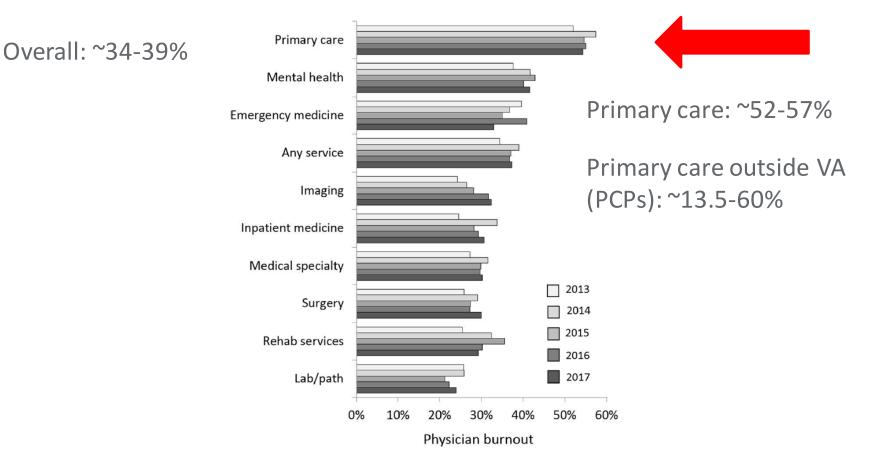


Prevalence of Physician Burnout

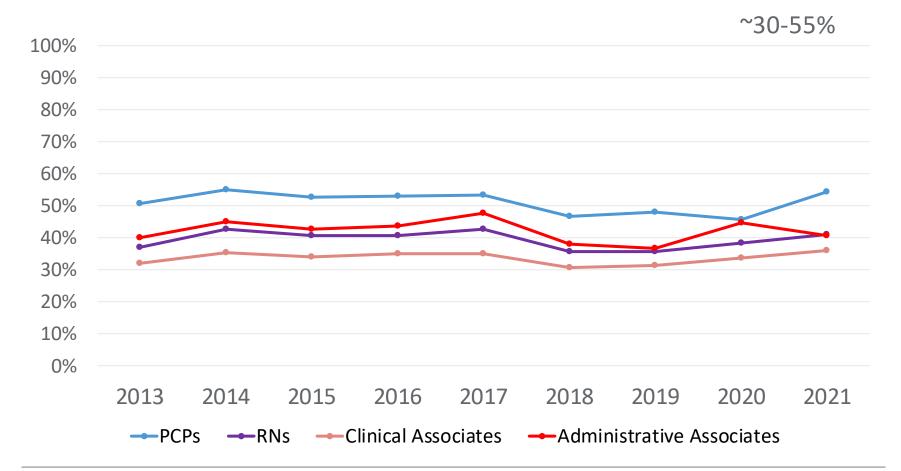
MBI-HSS EE ≥27 and/or DP≥10			
Shanafelt et al, ⁵¹ 2009	156	459	34.0 (29.7-38.5)
Pedersen et al, ⁴² 2018	147	588	25.0 (21.5-28.7)
Shanafelt et al, ⁴⁹ 2014	484	1083	44.7 (41.7-47.7)
Busis et al, ²⁵ 2017	971	1616	60.1 (57.7-62.5)
Shanafelt et al, ⁵⁰ 2015	3680	6764	54.4 (53.2-55.6)
Shanafelt et al, ⁴⁷ 2012	3310	7288	45.4 (44.3-46.6)
Subtotal	8748	17798	
MBI-HSS EE ≥27 and/or DP ≥13			
Kamal et al, ³³ 2016	428	691	61.9 (58.2-65.6)
Li et al, ³⁶ 2018	1182	1696	69.7 (67.4-71.9)
Subtotal	1610	2387	
MBI-HSS EE ≥28 and/or DP≥11			
Qureshi et al, ⁴⁴ 2015	460	1550	29.7 (27.4-32.0)
Shanafelt et al, ⁴⁸ 2009	3083	7785	39.6 (38.5-40.7)
Subtotal	3543	9335	

~30-62% in the US

Prevalence, % (95% CI)


Source: Rotenstein, et al. 2018; international sample

Prevalence of VA Physician Burnout



VA Primary Care Burnout

Note: All Employee Survey data; individual-level national averages; "once a week" or more of EE or DP symptoms

Burnout conceptual framework

Drivers \rightarrow Intermediate Outcome \rightarrow Downstream Outcomes

Adapted from: Rathert, et al. 2018 & West, et al. 2018

Data Sources for VA Primary Care Burnout Analyses

- Four main data sources:
 - •PACT National Survey
 - •VISN 22 Veterans Assessment Improvement Laboratory (VAIL) Primary Care Clinician and Staff Surveys
 - •VISN 22 VAIL COVID Survey
 - •VA All Employee Survey (AES)

Prevalence and Drivers of VA Primary Care Burnout (Helfrich, et al. 2014)

- Prevalence of burnout evident early in PACT implementation: 39%
 –2012 PACT National Survey of PACT teamlet members (n=4,593)
- Individual Drivers: More VA tenure, clinical associates worse than other members
- Organizational Drivers: PACT team assignment, low participatory decisionmaking, understaffed teams, working on tasks below one's training, chaotic working environment

Prevalence and Drivers of VA Primary Care Burnout (Helfrich, et al. 2017)

- Prevalence of burnout worsened: 41%
 - -2014 PACT National Survey of PACT teamlet members (n=4,610)
- Individual Drivers: PC providers worse than other teamlet members
- Organizational Drivers: Understaffed teams, team turnover, panel overcapacity, working extended hours during weekend, working extended hours without one's team

Prevalence and Drivers of VA Primary Care Burnout (Kim, et al. 2017)

- Prevalence of burnout among PCPs: 23 points on emotional exhaustion scale (approx. medium burnout on average)
 -2012-14 VISN 22 VAIL PACT Clinician Survey (n=327)
- Individual Drivers: Female gender, younger age, less VA tenure
- Organizational Drivers: PCP intervening on patient lifestyle factors, PCPs educating patients about disease-specific self-care activities, low team communication, low team knowledge and skills, low satisfaction with team

Prevalence and Drivers of VA Primary Care Burnout (Edwards, et al. 2018)

- **Prevalence** of burnout worse for PCPs (48%) than nurses (35%)
 - -2014 PACT National Survey of PCPs and PC nurses (n=777)
- Individual Drivers: ---
- Organizational Drivers: Lack of appropriate staffing, staff turnover, lack of a PACT coach (PCPs only), task delegation (lower burnout for PCPs, higher for nurses)

Prevalence and Drivers of VA Primary Care Burnout (Apaydin, et al. 2020)

• Prevalence of burnout steady for PCPs: 40%

-2016 VISN 22 VAIL PACT Clinician Survey (n=116)

- Individual Drivers: ---
- **Organizational Drivers**: Difficulties with tasks related to the PACT model (e.g., working with the call center, responding to patient email, responding to EHR alerts)

Prevalence and Drivers of VA Primary Care Burnout (Apaydin, et al. 2021a)

- **Prevalence** of burnout increased for PCPs: **46%**
 - -2018 PACT National Survey (n=1543)
 - -VA Corporate Data Warehouse (CDW): facility-level controls (staffing, panel size)
- Individual Drivers: ---
- Organizational Drivers: Challenges with non-VA care: managing patients with outside prescriptions, obtaining outside test & records

Prevalence and Drivers of VA Primary Care Burnout (Apaydin, et al. 2021b)

- Prevalence of burnout increased for PACT teamlet members:
 43%
 - -2020 VISN 22 VAIL pilot COVID survey of PACT teamlet members in two clinics (n=147)
- Individual Drivers: More VA tenure
- Organizational Drivers: Job-person fit for recognition & rewards at work and congruent self/organizational values (lower burnout)

Prevalence and Drivers of VA Primary Care Burnout (Apaydin, et al. 2021c)

- **Prevalence** of burnout increased for PCPs: **48%** —Sample of male and female PCPs from the 2019 AES (n=3216)
- Individual Drivers: Nurse practitioner profession (women only); more VA tenure; supervisor status (women only); Asian race (women only; lower burnout); Black race (men only; lower burnout)
- Organizational Drivers: Less workgroup civility (women only)

Prevalence and Drivers of VA Primary Care Burnout (Apaydin, et al. 2021d)

- Prevalence of burnout was higher for Women's Health (WH) PCPs (55%) and lower for general PCPs (47%)
 - -Sample of WH and general PCPs from the 2017-19 AES (n=7903)
 - -VA CDW: facility-level controls (patient visits, staffing, panel size, patient complexity, teaching hospital status, geography)
 - Women's Assessment Tool for Comprehensive Health: presence of a comprehensive women's health clinic
- Individual Drivers: Female gender; more VA tenure; Black and Asian races (lower burnout)
- **Organizational Drivers**: WH-PCPs; non-teaching hospital; Midwest location (lower burnout)

Primary Care Burnout during the COVID-19 Pandemic

- Over the course of PACT implementation, primary care burnout has remained steady or increased
- Evidence that burnout has been high among healthcare workers nationwide during the COVID-19 pandemic
- Little to no literature on impact of COVID-19 on primary care burnout

Current Research: PACT Teamlet Burnout during the COVID-19 Pandemic

- Conversations with VISN 22 PC leaders revealed potential COVID-related drivers of burnout:
 - -Contingency staffing for testing and COVID care
 - -Challenges with telehealth
- Our pilot study (Apaydin 2021b) indicated that a positive organizational climate may be protective of burnout
- Aim: Examine VA primary care burnout prevalence and drivers during the COVID-19 pandemic

Current Research: PACT Teamlet Burnout during the COVID-19 Pandemic

- Data Sources:
 - -2019-2020 All Employee Survey (individual-level data)
 - -Corporate Data Warehouse (facility-level data)
 - -COVID Shared Data Resource (COVID tests and deaths)
 - -VHA Support Service Center (facility complexity)

Current Research: PACT Teamlet Burnout during the COVID-19 Pandemic

- Driver Variables:
 - —Individual: employee engagement; provider profession, gender, age, race, ethnicity, VA tenure, supervisor status
 - -Organizational: COVID-19 tests and deaths, telehealth use, prior-year facility-level burnout, facility complexity
- Statistical Model:
 - -Logistic regression
 - Standard errors clustered by facility

COVID PACT Teamlet Burnout: Individual characteristics (n=19,909)

Characteristic	n (%)
Physician	25%
Female	74%
50+ years old	48%
White	57%
Non-Hispanic	79%
20 or more years in VA	8%
Supervisor	27%

COVID PACT Teamlet Burnout: Facility characteristics (n=141)

Characteristic	M (SD)	Range
COVID-19 tests/1000 unique patients	56.5 (47.0)	9.2-471.7
COVID-19 deaths/1000 unique patients	0.5 (0.5)	0-3.6
Facility proportion of PC telehealth visits/all visits	0.1 (0.1)	0-0.5
2019 facility-level burnout rate	0.3 (0.03)	0.2-0.4
Facility complexity level	n	(%)
1 (most complex)	59	42.4
2	58	41.7
3 (least complex)	22	15.8

COVID PACT Teamlet Burnout: Burnout and engagement (n=19,909)

Characteristic	%
Emotional exhaustion or	
depersonalization burnout	37
Emotional exhaustion burnout	35
Depersonalization burnout	27
High employee engagement	39

COVID PACT Teamlet Burnout: Highly engaged providers and staff were 70% less likely to be burned out (n=16,191)

Characteristic	Burnout (OR [95% Cl])
High Employee Engagement	
No	Ref
Yes	0.30 (0.28-0.33)*

Characteristic	Burnout (OR [95% CI])
Role	
Provider (MD/DO, NP, PA)	Ref
RN	0.70 (0.63-0.78)*
Clinical Associate	0.66 (0.59-0.75)*
Administrative Associate	0.93 (0.83-1.06)
Gender	
Male	Ref
Female	1.11 (1.03-1.20)*

Characteristic	Burnout (OR [95% CI])
Race	
White	Ref
Black or African American	0.79 (0.72-0.87)*
Asian	1.00 (0.80-1.25)
American Indian or Alaskan Native	0.81 (0.72-0.91)*
Native Hawaiian or other Pacific Islander	1.21 (0.95-1.55)
Ethnicity	
Hispanic	Ref
Non-Hispanic	1.07 (0.92-1.24)

Characteristic	Burnout (OR [95% CI])
Age	
29 years and under	Ref
30-49 years	0.75 (0.63-0.88)*
50+ years	0.55 (0.46-0.66)*
VA Tenure	
2 years or less	Ref
2-10 years	1.72 (1.56-1.89)*
10-20 years	1.85 (1.65-2.08)*
20+ years	1.81 (1.54-2.14)*

Note: These results are from our full model, containing all individual- and facility-level covariates, which may not appear on this slide

Characteristic	Burnout (OR [95% Cl])
Supervisor	
No	Ref
Yes	1.14 (1.05-1.23)*

COVID PACT Teamlet Burnout: Organizational Drivers (n=16,191)

Characteristic	Burnout (OR [95% CI])
Facility COVID Test Rate	
Lowest quartile (9.2-38.7 tests/1000 unique patients)	Ref
2 nd quartile (38.9-47.6 tests/1000 unique patients)	0.98 (0.88-1.09)
3 rd quartile (47.8-61.4 tests/1000 unique patients)	0.95 (0.84-1.07)
Highest quartile (65.2-471.7 tests/1000 unique patients)	0.89 (0.78-1.01)
Facility COVID-19 Death Rate	
Lowest tercile (0-0.27 deaths/1000 unique patients)	Ref
Middle tercile (0.27-0.69 deaths/1000 unique patients)	1.03 (0.94-1.12)
Highest tercile (0.69-3.65 deaths/1000 unique patients)	1.07 (0.84-1.05)

Note: These results are from our full model, containing all individual- and facility-level covariates, which may not appear on this slide

COVID PACT Teamlet Burnout: Organizational Drivers (n=16,191)

	Burnout
Characteristic	(OR [95% CI])
Facility Proportion of PC Telehealth Visits/All Visits	0.77 (0.55-1.06)
2019 average facility-level burnout rate (30%)	7.87 (2.01-30.81)*
Facility Complexity	
1	Ref
2	0.99 (0.87-1.13)
3	1.07 (0.94-1.23)

COVID PACT Teamlet Burnout:

Highly engaged employees in primary care are less likely to be burned out

- **37%** of primary care providers and staff were **burned out** during the pandemic
 - Burnout for PCPs decreased to 46%, while burnout for nurses (39%), clinical associates (33%), and administrative associates (44%) increased, from 2019 to 2020
 - These values are similar to burnout rates (ranging from 30-55% from 2013-2019) in VA primary care before COVID-19
- High employee engagement was related to 70% lower odds of burnout
- HCWs in facilities with greater than average burnout in 2019 were almost 8x more likely to be burned out in 2020
- COVID tests and deaths, and telehealth visits, were not related to burnout

Overall Conclusions

- Burnout in VA primary care is **persistently high**
- Individual drivers: women, those with more VA tenure, supervisors, are more burned out across studies
- Organizational drivers: higher burnout in VA primary care is related to:
 - High workload/hours
 - Low staffing
 - Low teamwork
 - Difficulties with work processes inside and outside VA
 - WH-PCPs
 - High facility-level average burnout

Overall Conclusions

- Organizational drivers: emerging evidence that lower burnout in VA primary care is related to:
 - -Job-person fit
 - -High workgroup civility
 - -High employee engagement

VA Prioritizing Burnout Reduction

- Reduce Employee Burnout and Optimize Organizational Thriving (REBOOT) Task Force
 - -Set up by the Acting Under Secretary for Health
 - Composed of workgroups to determine recommendations to reduce burnout in VA
- Two components:
 - -Employee well-being
 - -Organizational design
- Recommendations to be made public over the next few weeks

Evidence-Based Interventions to Reduce Burnout

- Individual interventions:
 - -Mindfulness training
 - -Counseling
 - -Stress management
 - -Group education
- Organizational interventions:
 - Team-based care
 - -Use of scribes
 - Schedule adjustments
 - -Quality improvement

Few Burnout Interventions Evaluated in VA

- Interventions to reduce burnout have not been yet extensively evaluated in VA
 - Some evidence that evidence-based quality improvement (EBQI) for PACT implementation reduced PCP burnout as a side effect (Meredith, et al. 2018)
- Current and future research:
 - Hospital Employee Appreciation Resiliency Training (HEART) Mindfulness
 Program (Stephanie Taylor, PhD; VA Greater Los Angeles)
 - Pilot testing deployments of national Chief Well-Being Officer and Listen-Sort-Empower programs (facilitated by Office of Patient-Centered Care & Cultural Transformation; evaluation TBD)

VA HSR&D Prioritizing Burnout Research

- VA HSR&D has already funded studies of mental health provider burnout (Kara Zivin, PhD; VA Ann Arbor) and turnover (Edwin Wong, PhD; VA Puget Sound)
- VEEWS (VHA Employee Engagement and Workforce Stability Research Group) meeting regularly to foster collaborative research development
 - Co-chaired by Kara Zivin, PhD, and Tanya Olmos-Ochoa, PhD (VA Greater Los Angeles)
- AcademyHealth contracted to help develop national VA clinician burnout research agenda (FY22)

Acknowledgements

We'd like to thank... Study Funding

Office of Academic Affiliations – HSR&D Fellowship Veterans Assessment and Improvement Laboratory for Patient-Centered Care (XVA 65-018; Office of Primary Care)

Partners

Primary Care Analytics Team (PCAT)

Co-Investigators

Elizabeth Yano, PhD Paul Shekelle, MD PhD Alison Hamilton, PhD Susan Stockdale, PhD Danielle Rose, PhD David Mohr, PhD VA Primary Care Providers and Staff

Veterans

CSHIIP Center for the Study of Healthcare Innovation, Implementation & Policy

Thank You!

Questions?

Contact: Eric Apaydin eric.apaydin@va.gov

References

- 1. Maslach C, Leiter MP. Understanding the burnout experience: recent research and its implications for psychiatry. *World Psychiatry*. Jun 2016;15(2):103-11. doi:10.1002/wps.20311.
- 2. Rotenstein LS, Torre M, Ramos MA, et al. Prevalence of Burnout Among Physicians: A Systematic Review. *JAMA*. Sep 18 2018;320(11):1131-1150. doi:10.1001/jama.2018.12777.
- 3. Rinne ST, Mohr DC, Swamy L, Blok AC, Wong ES, Charns MP. National Burnout Trends Among Physicians Working in the Department of Veterans Affairs. *J Gen Intern Med*. 2020;35(5):1382-1388. doi:10.1007/s11606-019-05582-7.
- 4. Abraham CM, Zheng K, Poghosyan L. Predictors and Outcomes of Burnout Among Primary Care Providers in the United States: A Systematic Review. *Med Care Res Rev*. 2020;77(5):387-401.
- 5. Rathert C, Williams ES, Linhart H. Evidence for the Quadruple Aim: A Systematic Review of the Literature on Physician Burnout and Patient Outcomes. *Med Care*. Dec 2018;56(12):976-984. doi:10.1097/MLR.00000000000999.
- 6. West CP, Dyrbye LN, Shanafelt TD. Physician burnout: contributors, consequences and solutions. *J Intern Med*. Jun 2018;283(6):516-529. doi:10.1111/joim.12752.
- 7. Helfrich CD, Dolan ED, Simonetti J, et al. Elements of team-based care in a patient-centered medical home are associated with lower burnout among VA primary care employees. *J Gen Intern Med*. 2014;29 Suppl 2:S659-66. doi:10.1007/s11606-013-2702-z.
- 8. Helfrich CD, Simonetti JA, Clinton WL, et al. The Association of Team-Specific Workload and Staffing with Odds of Burnout Among VA Primary Care Team Members. *J Gen Intern Med*. 2017;32(7):760-766. doi:10.1007/s11606-017-4011-4.

References

- 9. Kim LY, Rose DE, Soban LM, et al. Primary Care Tasks Associated with Provider Burnout: Findings from a Veterans Health Administration Survey. *J Gen Intern Med*. 2018;33(1):50-56. doi:10.1007/s11606-017-4188-6.
- 10. Edwards ST, Helfrich CD, Grembowski D, et al. Task Delegation and Burnout Trade-offs Among Primary Care Providers and Nurses in Veterans Affairs Patient Aligned Care Teams (VA PACTs). *J Am Board Fam Med*. 2018;31(1):83-93. doi:10.3122/jabfm.2018.01.170083.
- 11. Apaydin EA, Rose D, Meredith LS, McClean M, Dresselhaus T, Stockdale S. Association Between Difficulty with VA Patient-Centered Medical Home Model Components and Provider Emotional Exhaustion and Intent to Remain in Practice. *J Gen Intern Med*. 2020;35(7):2069-2075. doi:10.1007/s11606-020-05780-8.
- 12. Apaydin EA, Rose DE, McClean MR, et al. Association between care coordination tasks with non-VA community care and VA PCP burnout: an analysis of a national, cross-sectional survey. *BMC Health Serv Res*. 2021;21(1):809. doi:10.1186/s12913-021-06769-7.
- 13. Apaydin EA, Rose DE, Yano EM, et al. Burnout Among Primary Care Healthcare Workers During the COVID-19 Pandemic. *J Occup Environ Med*. 2021;63(8):642-645. doi:10.1097/JOM.00000000002263.
- 14. Apaydin EA, Rose DE, Yano EM, Shekelle PG, Stockdale SE, Mohr DC. Gender Differences in the Relationship Between Workplace Civility and Burnout Among VA Primary Care Providers. *J Gen Intern Med*. 2021. doi:10.1007/s11606-021-06818-1.
- 15. Apaydin EA, Mohr DC, Hamilton AB, Rose DE, Haskell S, Yano EM. Differences in Burnout and Intent to Leave Between Women's Health and General Primary Care Providers in the Veterans Health Administration. *J Gen Intern Med*. 2021. doi:10.1007/s11606-021-07133-5.

References

- 16. Panagioti M, Panagopoulou E, Bower P, et al. Controlled Interventions to Reduce Burnout in Physicians: A Systematic Review and Meta-analysis. JAMA Intern Med. Feb 1 2017;177(2):195-205. doi:10.1001/jamainternmed.2016.7674.
- 17. DeChant PF, Acs A, Rhee KB, et al. Effect of Organization-Directed Workplace Interventions on Physician Burnout: A Systematic Review. Mayo Clin Proc Innov Qual Outcomes. Dec 2019;3(4):384-408. doi:10.1016/j.mayocpigo.2019.07.006.
- 18. Meredith LS, Batorsky B, Cefalu M, et al. Long-term impact of evidence-based guality improvement for facilitating medical home implementation on primary care health professional morale. BMC Fam Pract. Aug 31 2018;19(1):149. doi:10.1186/s12875-018-0824-4.

